Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.statistics.descriptive; import java.util.Arrays; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.function.Function1D; /** * The second moment of a series of asset return data can be used as a measure * of the risk of that asset. However, in many instances a large positive * return is not regarded as a risk. The partial moment can be used as an * alternative. * <p> * The lower (higher) partial moment considers only those values that are below * (above) a threshold. Given a series of data $x_1, x_2, \dots, x_n$ sorted * from lowest to highest, the first (last) $k$ values are below (above) the * threshold $x_0$. The partial moment is given by: * $$ * \begin{align*} * \text{pm} = \sqrt{\frac{1}{k}\sum\limits_{i=1}^{k}(x_i - x_0)^2} * \end{align*} * $$ */ public class PartialMomentCalculator extends Function1D<double[], Double> { private final double _threshold; private final boolean _useDownSide; /** * Creates calculator with default values: threshold = 0 and useDownSide = true */ public PartialMomentCalculator() { this(0, true); } /** * * @param threshold The threshold value for the data * @param useDownSide If true, all data below the threshold is used */ public PartialMomentCalculator(final double threshold, final boolean useDownSide) { _threshold = threshold; _useDownSide = useDownSide; } /** * @param x The array of data, not null or empty * @return The partial moment */ @Override public Double evaluate(final double[] x) { Validate.notNull(x, "x"); Validate.isTrue(x.length > 0, "x cannot be empty"); final int n = x.length; final double[] copyX = Arrays.copyOf(x, n); Arrays.sort(copyX); double sum = 0; if (_useDownSide) { int i = 0; if (copyX[i] > _threshold) { return 0.; } while (i < n && copyX[i] < _threshold) { sum += (copyX[i] - _threshold) * (copyX[i] - _threshold); i++; } return Math.sqrt(sum / i); } int i = n - 1; int count = 0; if (copyX[i] < _threshold) { return 0.; } while (i >= 0 && copyX[i] > _threshold) { sum += (copyX[i] - _threshold) * (copyX[i] - _threshold); count++; i--; } return Math.sqrt(sum / count); } }