Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.rootfinding; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.MathException; import com.opengamma.analytics.math.function.RealPolynomialFunction1D; /** * Class that calculates the real roots of a quadratic function. * <p> * The roots can be found analytically. For a quadratic $ax^2 + bx + c = 0$, the roots are given by: * $$ * \begin{align*} * x_{1, 2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} * \end{align*} * $$ * If no real roots exist (i.e. $b^2 - 4ac < 0$) then an exception is thrown. */ public class QuadraticRealRootFinder implements Polynomial1DRootFinder<Double> { /** * {@inheritDoc} * @throws IllegalArgumentException If the function is not a quadratic * @throws MathException If the roots are not real */ @Override public Double[] getRoots(final RealPolynomialFunction1D function) { Validate.notNull(function, "function"); final double[] coefficients = function.getCoefficients(); Validate.isTrue(coefficients.length == 3, "Function is not a quadratic"); final double c = coefficients[0]; final double b = coefficients[1]; final double a = coefficients[2]; final double discriminant = b * b - 4 * a * c; if (discriminant < 0) { throw new MathException("No real roots for quadratic"); } final double q = -0.5 * (b + Math.signum(b) * discriminant); return new Double[] { q / a, c / q }; } }