Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.rootfinding; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.function.RealPolynomialFunction1D; import com.opengamma.analytics.math.number.ComplexNumber; import com.opengamma.util.CompareUtils; /** * Class that calculates the roots of a cubic equation. * <p> * As the polynomial has real coefficients, the roots of the cubic can be found using the method described * <a href="http://mathworld.wolfram.com/CubicFormula.html">here</a>. */ public class CubicRootFinder implements Polynomial1DRootFinder<ComplexNumber> { private static final double TWO_PI = 2 * Math.PI; /** * {@inheritDoc} * @throws IllegalArgumentException If the function is not cubic */ @Override public ComplexNumber[] getRoots(final RealPolynomialFunction1D function) { Validate.notNull(function, "function"); final double[] coefficients = function.getCoefficients(); Validate.isTrue(coefficients.length == 4, "Function is not a cubic"); final double divisor = coefficients[3]; final double a = coefficients[2] / divisor; final double b = coefficients[1] / divisor; final double c = coefficients[0] / divisor; final double aSq = a * a; final double q = (aSq - 3 * b) / 9; final double r = (2 * a * aSq - 9 * a * b + 27 * c) / 54; final double rSq = r * r; final double qCb = q * q * q; final double constant = a / 3; if (rSq < qCb) { final double mult = -2 * Math.sqrt(q); final double theta = Math.acos(r / Math.sqrt(qCb)); return new ComplexNumber[] { new ComplexNumber(mult * Math.cos(theta / 3) - constant, 0), new ComplexNumber(mult * Math.cos((theta + TWO_PI) / 3) - constant, 0), new ComplexNumber(mult * Math.cos((theta - TWO_PI) / 3) - constant, 0) }; } final double s = -Math.signum(r) * Math.cbrt(Math.abs(r) + Math.sqrt(rSq - qCb)); final double t = CompareUtils.closeEquals(s, 0, 1e-16) ? 0 : q / s; final double sum = s + t; final double real = -0.5 * sum - constant; final double imaginary = Math.sqrt(3) * (s - t) / 2; return new ComplexNumber[] { new ComplexNumber(sum - constant, 0), new ComplexNumber(real, imaginary), new ComplexNumber(real, -imaginary) }; } }