Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.rootfinding; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.MathException; import com.opengamma.analytics.math.function.Function1D; /** * Class that brackets single root of a function. For a 1-D function ({@link com.opengamma.analytics.math.function.Function1D}) $f(x)$, * initial values for the interval, $x_1$ and $x_2$, are supplied. * <p> * A root is assumed to be bracketed if $f(x_1)f(x_2) < 0$. If this condition is not satisfied, then either * $|f(x_1)| < |f(x_2)|$, in which case the lower value $x_1$ is shifted in the negative $x$ direction, or * the upper value $x_2$ is shifted in the positive $x$ direction. The amount by which to shift is the difference between * the two $x$ values multiplied by a constant ratio (1.6). If a root is not bracketed after 50 attempts, an exception is thrown. */ public class BracketRoot { private static final double RATIO = 1.6; private static final int MAX_STEPS = 50; /** * @param f The function, not null * @param xLower Initial value of lower bracket * @param xUpper Initial value of upper bracket * @return The bracketed points as an array, where the first element is the lower bracket and the second the upper bracket. * @throws MathException If a root is not bracketed in 50 attempts. */ public double[] getBracketedPoints(final Function1D<Double, Double> f, final double xLower, final double xUpper) { Validate.notNull(f, "f"); double x1 = xLower; double x2 = xUpper; double f1 = 0; double f2 = 0; f1 = f.evaluate(x1); f2 = f.evaluate(x2); if (Double.isNaN(f1)) { throw new MathException("Failed to bracket root: function invalid at x = " + x1 + " f(x) = " + f1); } if (Double.isNaN(f2)) { throw new MathException("Failed to bracket root: function invalid at x = " + x2 + " f(x) = " + f2); } for (int count = 0; count < MAX_STEPS; count++) { if (f1 * f2 < 0) { return new double[] { x1, x2 }; } if (Math.abs(f1) < Math.abs(f2)) { x1 += RATIO * (x1 - x2); f1 = f.evaluate(x1); if (Double.isNaN(f1)) { throw new MathException( "Failed to bracket root: function invalid at x = " + x1 + " f(x) = " + f1); } } else { x2 += RATIO * (x2 - x1); f2 = f.evaluate(x2); if (Double.isNaN(f2)) { throw new MathException( "Failed to bracket root: function invalid at x = " + x2 + " f(x) = " + f2); } } } throw new MathException("Failed to bracket root"); } public double[] getBracketedPoints(final Function1D<Double, Double> f, final double xLower, final double xUpper, final double minX, final double maxX) { Validate.notNull(f, "f"); Validate.isTrue(xLower >= minX, "xLower < minX"); Validate.isTrue(xUpper <= maxX, "xUpper < maxX"); double x1 = xLower; double x2 = xUpper; double f1 = 0; double f2 = 0; boolean lowerLimitReached = false; boolean upperLimitReached = false; f1 = f.evaluate(x1); f2 = f.evaluate(x2); if (Double.isNaN(f1)) { throw new MathException("Failed to bracket root: function invalid at x = " + x1 + " f(x) = " + f1); } if (Double.isNaN(f2)) { throw new MathException("Failed to bracket root: function invalid at x = " + x2 + " f(x) = " + f2); } for (int count = 0; count < MAX_STEPS; count++) { if (f1 * f2 <= 0) { return new double[] { x1, x2 }; } if (lowerLimitReached && upperLimitReached) { throw new MathException("Failed to bracket root: no root found between minX and maxX"); } if (Math.abs(f1) < Math.abs(f2) && !lowerLimitReached) { x1 += RATIO * (x1 - x2); if (x1 < minX) { x1 = minX; lowerLimitReached = true; } f1 = f.evaluate(x1); if (Double.isNaN(f1)) { throw new MathException( "Failed to bracket root: function invalid at x = " + x1 + " f(x) = " + f1); } } else { x2 += RATIO * (x2 - x1); if (x2 > maxX) { x2 = maxX; upperLimitReached = true; } f2 = f.evaluate(x2); if (Double.isNaN(f2)) { throw new MathException( "Failed to bracket root: function invalid at x = " + x2 + " f(x) = " + f2); } } } throw new MathException("Failed to bracket root: max iterations"); } }