Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.regression; import java.util.Arrays; import org.apache.commons.lang.Validate; /** * Contains the result of a least squares regression. */ public class LeastSquaresRegressionResult { //TODO the predicted value calculation should be separated out from this class. private final double[] _residuals; private final double[] _betas; private final double _meanSquareError; private final double[] _standardErrorOfBeta; private final double _rSquared; private final double _rSquaredAdjusted; private final double[] _tStats; private final double[] _pValues; private final boolean _hasIntercept; public LeastSquaresRegressionResult(final LeastSquaresRegressionResult result) { Validate.notNull(result, "regression result"); _betas = result.getBetas(); _residuals = result.getResiduals(); _meanSquareError = result.getMeanSquareError(); _standardErrorOfBeta = result.getStandardErrorOfBetas(); _rSquared = result.getRSquared(); _rSquaredAdjusted = result.getAdjustedRSquared(); _tStats = result.getTStatistics(); _pValues = result.getPValues(); _hasIntercept = result.hasIntercept(); } public LeastSquaresRegressionResult(final double[] betas, final double[] residuals, final double meanSquareError, final double[] standardErrorOfBeta, final double rSquared, final double rSquaredAdjusted, final double[] tStats, final double[] pValues, final boolean hasIntercept) { _betas = betas; _residuals = residuals; _meanSquareError = meanSquareError; _standardErrorOfBeta = standardErrorOfBeta; _rSquared = rSquared; _rSquaredAdjusted = rSquaredAdjusted; _tStats = tStats; _pValues = pValues; _hasIntercept = hasIntercept; } public double[] getBetas() { return _betas; } public double[] getResiduals() { return _residuals; } public double getMeanSquareError() { return _meanSquareError; } public double[] getStandardErrorOfBetas() { return _standardErrorOfBeta; } public double getRSquared() { return _rSquared; } public double getAdjustedRSquared() { return _rSquaredAdjusted; } public double[] getTStatistics() { return _tStats; } public double[] getPValues() { return _pValues; } public boolean hasIntercept() { return _hasIntercept; } public double getPredictedValue(final double[] x) { Validate.notNull(x, "x"); final double[] betas = getBetas(); if (hasIntercept()) { if (x.length != betas.length - 1) { throw new IllegalArgumentException("Number of variables did not match number used in regression"); } } else { if (x.length != betas.length) { throw new IllegalArgumentException("Number of variables did not match number used in regression"); } } double sum = 0; for (int i = 0; i < (hasIntercept() ? x.length + 1 : x.length); i++) { if (hasIntercept()) { if (i == 0) { sum += betas[0]; } else { sum += betas[i] * x[i - 1]; } } else { sum += x[i] * betas[i]; } } return sum; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + Arrays.hashCode(_betas); result = prime * result + (_hasIntercept ? 1231 : 1237); long temp; temp = Double.doubleToLongBits(_meanSquareError); result = prime * result + (int) (temp ^ (temp >>> 32)); result = prime * result + Arrays.hashCode(_pValues); temp = Double.doubleToLongBits(_rSquared); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(_rSquaredAdjusted); result = prime * result + (int) (temp ^ (temp >>> 32)); result = prime * result + Arrays.hashCode(_residuals); result = prime * result + Arrays.hashCode(_standardErrorOfBeta); result = prime * result + Arrays.hashCode(_tStats); return result; } @Override public boolean equals(final Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final LeastSquaresRegressionResult other = (LeastSquaresRegressionResult) obj; if (!Arrays.equals(_betas, other._betas)) { return false; } if (_hasIntercept != other._hasIntercept) { return false; } if (Double.doubleToLongBits(_meanSquareError) != Double.doubleToLongBits(other._meanSquareError)) { return false; } if (!Arrays.equals(_pValues, other._pValues)) { return false; } if (Double.doubleToLongBits(_rSquared) != Double.doubleToLongBits(other._rSquared)) { return false; } if (Double.doubleToLongBits(_rSquaredAdjusted) != Double.doubleToLongBits(other._rSquaredAdjusted)) { return false; } if (!Arrays.equals(_residuals, other._residuals)) { return false; } if (!Arrays.equals(_standardErrorOfBeta, other._standardErrorOfBeta)) { return false; } if (!Arrays.equals(_tStats, other._tStats)) { return false; } return true; } }