Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.linearalgebra; import java.util.Arrays; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.matrix.DoubleMatrix2D; import com.opengamma.analytics.math.matrix.Matrix; import com.opengamma.util.ArgumentChecker; /** * Class representing a tridiagonal matrix: * $$ * \begin{align*} * \begin{pmatrix} * a_1 & b_1 & 0 & \cdots & 0 & 0 & 0 \\ * c_1 & a_2 & b_2 & \cdots & 0 & 0 & 0 \\ * 0 & & \ddots & & \vdots & \vdots & \vdots \\ * 0 & 0 & 0 & & c_{n-2} & a_{n-1} & b_{n-1} \\ * 0 & 0 & 0 & \cdots & 0 & c_{n-1} & a_n * \end{pmatrix} * \end{align*} * $$ */ public class TridiagonalMatrix implements Matrix<Double> { private final double[] _a; private final double[] _b; private final double[] _c; private DoubleMatrix2D _matrix; /** * @param a An array containing the diagonal values of the matrix, not null * @param b An array containing the upper sub-diagonal values of the matrix, not null. Its length must be one less than the length of the diagonal array * @param c An array containing the lower sub-diagonal values of the matrix, not null. Its length must be one less than the length of the diagonal array */ public TridiagonalMatrix(final double[] a, final double[] b, final double[] c) { Validate.notNull(a, "a"); Validate.notNull(b, "b"); Validate.notNull(c, "c"); final int n = a.length; Validate.isTrue(b.length == n - 1, "Length of subdiagonal b is incorrect"); Validate.isTrue(c.length == n - 1, "Length of subdiagonal c is incorrect"); _a = a; _b = b; _c = c; } /** * Direct access to Diagonal Data * @return An array of the values of the diagonal */ public double[] getDiagonalData() { return _a; } /** * @return An array of the values of the diagonal */ public double[] getDiagonal() { return Arrays.copyOf(_a, _a.length); } /** * Direct access to upper sub-Diagonal Data * @return An array of the values of the upper sub-diagonal */ public double[] getUpperSubDiagonalData() { return _b; } /** * @return An array of the values of the upper sub-diagonal */ public double[] getUpperSubDiagonal() { return Arrays.copyOf(_b, _b.length); } /** * Direct access to lower sub-Diagonal Data * @return An array of the values of the lower sub-diagonal */ public double[] getLowerSubDiagonalData() { return _c; } /** * @return An array of the values of the lower sub-diagonal */ public double[] getLowerSubDiagonal() { return Arrays.copyOf(_c, _c.length); } /** * @return Returns the tridiagonal matrix as a {@link com.opengamma.analytics.math.matrix.DoubleMatrix2D} */ public DoubleMatrix2D toDoubleMatrix2D() { if (_matrix == null) { calMatrix(); } return _matrix; } private void calMatrix() { int n = _a.length; final double[][] data = new double[n][n]; for (int i = 0; i < n; i++) { data[i][i] = _a[i]; } for (int i = 1; i < n; i++) { data[i - 1][i] = _b[i - 1]; } for (int i = 1; i < n; i++) { data[i][i - 1] = _c[i - 1]; } _matrix = new DoubleMatrix2D(data); } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + Arrays.hashCode(_a); result = prime * result + Arrays.hashCode(_b); result = prime * result + Arrays.hashCode(_c); return result; } @Override public boolean equals(final Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final TridiagonalMatrix other = (TridiagonalMatrix) obj; if (!Arrays.equals(_a, other._a)) { return false; } if (!Arrays.equals(_b, other._b)) { return false; } if (!Arrays.equals(_c, other._c)) { return false; } return true; } @Override public int getNumberOfElements() { return _a.length; } @Override public Double getEntry(int... index) { ArgumentChecker.notNull(index, "indices"); final int n = _a.length; final int i = index[0]; final int j = index[1]; ArgumentChecker.isTrue(i >= 0 && i < n, "x index {} out of range. Matrix has {} rows", index[0], n); ArgumentChecker.isTrue(j >= 0 && j < n, "y index {} out of range. Matrix has {} columns", index[1], n); if (i == j) { return _a[i]; } else if ((i - 1) == j) { return _c[i - 1]; } else if ((i + 1) == j) { return _b[i]; } return 0.0; } }