Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.interpolation; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.interpolation.data.ArrayInterpolator1DDataBundle; import com.opengamma.analytics.math.interpolation.data.InterpolationBoundedValues; import com.opengamma.analytics.math.interpolation.data.Interpolator1DDataBundle; /** * A one-dimensional interpolator. The interpolated value of the function * <i>y</i> at <i>x</i> between two data points <i>(x<sub>1</sub>, * y<sub>1</sub>)</i> and <i>(x<sub>2</sub>, y<sub>2</sub>)</i> is given by:<br> * <i>y = y<sub>1</sub> (y<sub>2</sub> / y<sub>1</sub>) ^ ((x - x<sub>1</sub>) / * (x<sub>2</sub> - x<sub>1</sub>))</i><br> * It is the equivalent of performing a linear interpolation on a data set after * taking the logarithm of the y-values. * */ public class LogLinearInterpolator1D extends Interpolator1D { private static final long serialVersionUID = 1L; @Override public Double interpolate(final Interpolator1DDataBundle model, final Double value) { Validate.notNull(value, "value"); Validate.notNull(model, "data bundle"); final InterpolationBoundedValues boundedValues = model.getBoundedValues(value); final Double x1 = boundedValues.getLowerBoundKey(); final Double y1 = boundedValues.getLowerBoundValue(); if (model.getLowerBoundIndex(value) == model.size() - 1) { return y1; } final Double x2 = boundedValues.getHigherBoundKey(); final Double y2 = boundedValues.getHigherBoundValue(); return Math.pow(y2 / y1, (value - x1) / (x2 - x1)) * y1; } @Override public double firstDerivative(final Interpolator1DDataBundle model, final Double value) { Validate.notNull(value, "value"); Validate.notNull(model, "data bundle"); final InterpolationBoundedValues boundedValues = model.getBoundedValues(value); final Double x1 = boundedValues.getLowerBoundKey(); final Double y1 = boundedValues.getLowerBoundValue(); if (model.getLowerBoundIndex(value) == model.size() - 1) { return 0.; } final Double x2 = boundedValues.getHigherBoundKey(); final Double y2 = boundedValues.getHigherBoundValue(); return Math.pow(y2 / y1, (value - x1) / (x2 - x1)) * y1 * Math.log(y2 / y1) / (x2 - x1); } @Override public Interpolator1DDataBundle getDataBundle(final double[] x, final double[] y) { return new ArrayInterpolator1DDataBundle(x, y); } @Override public Interpolator1DDataBundle getDataBundleFromSortedArrays(final double[] x, final double[] y) { return new ArrayInterpolator1DDataBundle(x, y, true); } @Override public double[] getNodeSensitivitiesForValue(Interpolator1DDataBundle data, Double value) { return getFiniteDifferenceSensitivities(data, value); } }