Java tutorial
/** * Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.interpolation; import java.util.Arrays; import org.apache.commons.lang.NotImplementedException; import com.opengamma.analytics.math.matrix.DoubleMatrix1D; import com.opengamma.analytics.math.matrix.DoubleMatrix2D; import com.opengamma.util.ArgumentChecker; import com.opengamma.util.ParallelArrayBinarySort; /** * Interpolate consecutive two points by a straight line * Note that this interpolator is NOT included in {@link Interpolator1DFactory} * Use {@link LinearInterpolator1D} for node sensitivity */ public class LinearInterpolator extends PiecewisePolynomialInterpolator { private static final double ERROR = 1.e-13; @Override public PiecewisePolynomialResult interpolate(final double[] xValues, final double[] yValues) { ArgumentChecker.notNull(xValues, "xValues"); ArgumentChecker.notNull(yValues, "yValues"); ArgumentChecker.isTrue(xValues.length == yValues.length, "xValues length = yValues length"); ArgumentChecker.isTrue(xValues.length > 1, "Data points should be more than 1"); final int nDataPts = xValues.length; for (int i = 0; i < nDataPts; ++i) { ArgumentChecker.isFalse(Double.isNaN(xValues[i]), "xData containing NaN"); ArgumentChecker.isFalse(Double.isInfinite(xValues[i]), "xData containing Infinity"); ArgumentChecker.isFalse(Double.isNaN(yValues[i]), "yData containing NaN"); ArgumentChecker.isFalse(Double.isInfinite(yValues[i]), "yData containing Infinity"); } for (int i = 0; i < nDataPts; ++i) { for (int j = i + 1; j < nDataPts; ++j) { ArgumentChecker.isFalse(xValues[i] == xValues[j], "xValues should be distinct"); } } double[] xValuesSrt = Arrays.copyOf(xValues, nDataPts); double[] yValuesSrt = Arrays.copyOf(yValues, nDataPts); ParallelArrayBinarySort.parallelBinarySort(xValuesSrt, yValuesSrt); final DoubleMatrix2D coefMatrix = solve(xValuesSrt, yValuesSrt); for (int i = 0; i < coefMatrix.getNumberOfRows(); ++i) { for (int j = 0; j < coefMatrix.getNumberOfColumns(); ++j) { ArgumentChecker.isFalse(Double.isNaN(coefMatrix.getData()[i][j]), "Too large input"); ArgumentChecker.isFalse(Double.isInfinite(coefMatrix.getData()[i][j]), "Too large input"); } double ref = 0.; final double interval = xValuesSrt[i + 1] - xValuesSrt[i]; for (int j = 0; j < 2; ++j) { ref += coefMatrix.getData()[i][j] * Math.pow(interval, 1 - j); ArgumentChecker.isFalse(Double.isNaN(coefMatrix.getData()[i][j]), "Too large input"); ArgumentChecker.isFalse(Double.isInfinite(coefMatrix.getData()[i][j]), "Too large input"); } final double bound = Math.max(Math.abs(ref) + Math.abs(yValuesSrt[i + 1]), 1.e-1); ArgumentChecker.isTrue(Math.abs(ref - yValuesSrt[i + 1]) < ERROR * bound, "Input is too large/small or data are not distinct enough"); } return new PiecewisePolynomialResult(new DoubleMatrix1D(xValuesSrt), coefMatrix, coefMatrix.getNumberOfColumns(), 1); } @Override public PiecewisePolynomialResult interpolate(final double[] xValues, final double[][] yValuesMatrix) { ArgumentChecker.notNull(xValues, "xValues"); ArgumentChecker.notNull(yValuesMatrix, "yValuesMatrix"); ArgumentChecker.isTrue(xValues.length == yValuesMatrix[0].length, "(xValues length = yValuesMatrix's row vector length)"); ArgumentChecker.isTrue(xValues.length > 1, "Data points should be more than 1"); final int nDataPts = xValues.length; final int dim = yValuesMatrix.length; for (int i = 0; i < nDataPts; ++i) { ArgumentChecker.isFalse(Double.isNaN(xValues[i]), "xData containing NaN"); ArgumentChecker.isFalse(Double.isInfinite(xValues[i]), "xData containing Infinity"); for (int j = 0; j < dim; ++j) { ArgumentChecker.isFalse(Double.isNaN(yValuesMatrix[j][i]), "yValuesMatrix containing NaN"); ArgumentChecker.isFalse(Double.isInfinite(yValuesMatrix[j][i]), "yValuesMatrix containing Infinity"); } } for (int k = 0; k < dim; ++k) { for (int i = 0; i < nDataPts; ++i) { for (int j = i + 1; j < nDataPts; ++j) { ArgumentChecker.isFalse(xValues[i] == xValues[j], "xValues should be distinct"); } } } double[] xValuesSrt = new double[nDataPts]; DoubleMatrix2D[] coefMatrix = new DoubleMatrix2D[dim]; for (int i = 0; i < dim; ++i) { xValuesSrt = Arrays.copyOf(xValues, nDataPts); double[] yValuesSrt = Arrays.copyOf(yValuesMatrix[i], nDataPts); ParallelArrayBinarySort.parallelBinarySort(xValuesSrt, yValuesSrt); coefMatrix[i] = solve(xValuesSrt, yValuesSrt); for (int k = 0; k < xValuesSrt.length - 1; ++k) { double ref = 0.; final double interval = xValuesSrt[k + 1] - xValuesSrt[k]; for (int j = 0; j < 2; ++j) { ref += coefMatrix[i].getData()[k][j] * Math.pow(interval, 1 - j); ArgumentChecker.isFalse(Double.isNaN(coefMatrix[i].getData()[k][j]), "Too large input"); ArgumentChecker.isFalse(Double.isInfinite(coefMatrix[i].getData()[k][j]), "Too large input"); } final double bound = Math.max(Math.abs(ref) + Math.abs(yValuesSrt[k + 1]), 1.e-1); ArgumentChecker.isTrue(Math.abs(ref - yValuesSrt[k + 1]) < ERROR * bound, "Input is too large/small or data points are too close"); } } final int nIntervals = coefMatrix[0].getNumberOfRows(); final int nCoefs = coefMatrix[0].getNumberOfColumns(); double[][] resMatrix = new double[dim * nIntervals][nCoefs]; for (int i = 0; i < nIntervals; ++i) { for (int j = 0; j < dim; ++j) { resMatrix[dim * i + j] = coefMatrix[j].getRowVector(i).getData(); } } return new PiecewisePolynomialResult(new DoubleMatrix1D(xValuesSrt), new DoubleMatrix2D(resMatrix), nCoefs, dim); } @Override public PiecewisePolynomialResultsWithSensitivity interpolateWithSensitivity(final double[] xValues, final double[] yValues) { throw new NotImplementedException("Use LinearInterpolator1D for node sensitivity"); } /** * @param xValues X values of data * @param yValues Y values of data * @return Coefficient matrix whose i-th row vector is {a1, a0} of f(x) = a1 * (x-x_i) + a0 for the i-th interval */ private DoubleMatrix2D solve(final double[] xValues, final double[] yValues) { final int nDataPts = xValues.length; double[][] res = new double[nDataPts - 1][2]; for (int i = 0; i < nDataPts - 1; ++i) { res[i][1] = yValues[i]; res[i][0] = (yValues[i + 1] - yValues[i]) / (xValues[i + 1] - xValues[i]); } return new DoubleMatrix2D(res); } }