Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.integration; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.function.DoubleFunction1D; import com.opengamma.analytics.math.function.special.LegendrePolynomialFunction; import com.opengamma.analytics.math.rootfinding.NewtonRaphsonSingleRootFinder; import com.opengamma.util.tuple.Pair; /** * Class that generates weights and abscissas for Gauss-Legendre quadrature. * The weights $w_i$ are given by: * $$ * \begin{align*} * w_i = \frac{2}{(1 - x_i^2) L_i'(x_i)^2} * \end{align*} * $$ * where $x_i$ is the $i^{th}$ root of the orthogonal polynomial and $L_i'$ is * the first derivative of the $i^{th}$ polynomial. The orthogonal polynomial * is generated by * {@link com.opengamma.analytics.math.function.special.LegendrePolynomialFunction}. */ public class GaussLegendreWeightAndAbscissaFunction implements QuadratureWeightAndAbscissaFunction { private static final LegendrePolynomialFunction LEGENDRE = new LegendrePolynomialFunction(); private static final NewtonRaphsonSingleRootFinder ROOT_FINDER = new NewtonRaphsonSingleRootFinder(1e-15); /** * {@inheritDoc} */ @Override public GaussianQuadratureData generate(final int n) { Validate.isTrue(n > 0); final int mid = (n + 1) / 2; final double[] x = new double[n]; final double[] w = new double[n]; final Pair<DoubleFunction1D, DoubleFunction1D>[] polynomials = LEGENDRE.getPolynomialsAndFirstDerivative(n); final Pair<DoubleFunction1D, DoubleFunction1D> pair = polynomials[n]; final DoubleFunction1D function = pair.getFirst(); final DoubleFunction1D derivative = pair.getSecond(); for (int i = 0; i < mid; i++) { final double root = ROOT_FINDER.getRoot(function, derivative, getInitialRootGuess(i, n)); x[i] = -root; x[n - i - 1] = root; final double dp = derivative.evaluate(root); w[i] = 2 / ((1 - root * root) * dp * dp); w[n - i - 1] = w[i]; } return new GaussianQuadratureData(x, w); } private double getInitialRootGuess(final int i, final int n) { return Math.cos(Math.PI * (i + 0.75) / (n + 0.5)); } }