Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.integration; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.function.Function1D; /** * Gauss-Hermite quadrature approximates the value of integrals of the form * $$ * \begin{align*} * \int_{-\infty}^{\infty} e^{-x^2} g(x) dx * \end{align*} * $$ * The weights and abscissas are generated by {@link GaussHermiteWeightAndAbscissaFunction}. * <p> * At present, this integrator can only be used for the limits $\pm\infty$. The * function to integrate is scaled in such a way as to allow any values for the * limits of integration. */ public class GaussHermiteQuadratureIntegrator1D extends GaussianQuadratureIntegrator1D { private static final Double[] LIMITS = new Double[] { Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY }; private static final GaussHermiteWeightAndAbscissaFunction GENERATOR = new GaussHermiteWeightAndAbscissaFunction(); /** * @param n The number of sample points to use in the integration */ public GaussHermiteQuadratureIntegrator1D(final int n) { super(n, GENERATOR); } /** * {@inheritDoc} */ @Override public Double[] getLimits() { return LIMITS; } /** * {@inheritDoc} * The function $f(x)$ that is to be integrated is transformed into a form * suitable for this quadrature method using: * $$ * \begin{align*} * \int_{-\infty}^{\infty} f(x) dx * &= \int_{-\infty}^{\infty} f(x) e^{x^2} e^{-x^2} dx\\ * &= \int_{-\infty}^{\infty} g(x) e^{-x^2} dx * \end{align*} * $$ * @throws UnsupportedOperationException If the lower limit is not $-\infty$ or the upper limit is not $\infty$ */ @Override public Function1D<Double, Double> getIntegralFunction(final Function1D<Double, Double> function, final Double lower, final Double upper) { Validate.notNull(function, "function"); Validate.notNull(lower, "lower"); Validate.notNull(upper, "upper"); if (lower.equals(LIMITS[0]) && upper.equals(LIMITS[1])) { return new Function1D<Double, Double>() { @Override public Double evaluate(final Double x) { return Math.exp(x * x) * function.evaluate(x); } }; } throw new UnsupportedOperationException("Limits for this integration method are +/-infinity"); } }