Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.function.special; import org.apache.commons.math.special.Gamma; import com.opengamma.analytics.math.function.Function1D; /** * * The gamma function is a generalization of the factorial to complex and real * numbers. It is defined by the integral: * $$ * \begin{equation*} * \Gamma(z)=\int_0^\infty t^{z-1}e^{-t}dt * \end{equation*} * $$ * and is related to the factorial by * $$ * \begin{equation*} * \Gamma(n+1)=n! * \end{equation*} * $$ * It is analytic everywhere but $z=0, -1, -2, \ldots$ * <p> * This class is a wrapper for the <a href="http://commons.apache.org/math/api-2.1/org/apache/commons/math/special/Gamma.html">Commons Math library implementation</a> * of the Gamma function. * */ public class GammaFunction extends Function1D<Double, Double> { @Override public Double evaluate(final Double x) { if (x > 0.0) { return Math.exp(Gamma.logGamma(x)); } return Math.PI / Math.sin(Math.PI * x) / evaluate(1 - x); } }