Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.differentiation; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.MathException; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.util.ArgumentChecker; /** * Differentiates a scalar function with respect to its argument using finite difference. * <p> * For a function $y = f(x)$ where $x$ and $y$ are scalars, this class produces * a gradient function $g(x)$, i.e. a function that returns the gradient for * each point $x$, where $g$ is the scalar $\frac{dy}{dx}$. */ public class ScalarFirstOrderDifferentiator implements Differentiator<Double, Double, Double> { private static final double DEFAULT_EPS = 1e-5; private static final double MIN_EPS = Math.sqrt(Double.MIN_NORMAL); private static final FiniteDifferenceType DIFF_TYPE = FiniteDifferenceType.CENTRAL; private final double _eps; private final double _twoEps; private final FiniteDifferenceType _differenceType; /** * Uses the default values of differencing type (central) and eps (10<sup>-5</sup>). */ public ScalarFirstOrderDifferentiator() { this(DIFF_TYPE, DEFAULT_EPS); } /** * Uses the default value of eps (10<sup>-5</sup>) * @param differenceType The differencing type to be used in calculating the gradient function */ public ScalarFirstOrderDifferentiator(final FiniteDifferenceType differenceType) { this(differenceType, DEFAULT_EPS); } /** * @param differenceType {@link FiniteDifferenceType#FORWARD}, {@link FiniteDifferenceType#BACKWARD}, or {@link FiniteDifferenceType#CENTRAL}. In most situations, * {@link FiniteDifferenceType#CENTRAL} is preferable. Not null * @param eps The step size used to approximate the derivative. If this value is too small, the result will most likely be dominated by noise. * Use around 10<sup>5</sup> times the domain size. */ public ScalarFirstOrderDifferentiator(final FiniteDifferenceType differenceType, final double eps) { Validate.notNull(differenceType); if (eps < MIN_EPS) { throw new IllegalArgumentException( "eps is too small. A good value is 1e-5*size of domain. The minimum value is " + MIN_EPS); } _differenceType = differenceType; _eps = eps; _twoEps = 2 * _eps; } @Override public Function1D<Double, Double> differentiate(final Function1D<Double, Double> function) { Validate.notNull(function); switch (_differenceType) { case FORWARD: return new Function1D<Double, Double>() { @SuppressWarnings("synthetic-access") @Override public Double evaluate(final Double x) { Validate.notNull(x, "x"); return (function.evaluate(x + _eps) - function.evaluate(x)) / _eps; } }; case CENTRAL: return new Function1D<Double, Double>() { @SuppressWarnings("synthetic-access") @Override public Double evaluate(final Double x) { Validate.notNull(x, "x"); return (function.evaluate(x + _eps) - function.evaluate(x - _eps)) / _twoEps; } }; case BACKWARD: return new Function1D<Double, Double>() { @SuppressWarnings("synthetic-access") @Override public Double evaluate(final Double x) { Validate.notNull(x, "x"); return (function.evaluate(x) - function.evaluate(x - _eps)) / _eps; } }; default: throw new IllegalArgumentException("Can only handle forward, backward and central differencing"); } } @Override public Function1D<Double, Double> differentiate(final Function1D<Double, Double> function, final Function1D<Double, Boolean> domain) { Validate.notNull(function); Validate.notNull(domain); final double[] wFwd = new double[] { -3. / _twoEps, 4. / _twoEps, -1. / _twoEps }; final double[] wCent = new double[] { -1. / _twoEps, 0., 1. / _twoEps }; final double[] wBack = new double[] { 1. / _twoEps, -4. / _twoEps, 3. / _twoEps }; return new Function1D<Double, Double>() { @SuppressWarnings("synthetic-access") @Override public Double evaluate(final Double x) { Validate.notNull(x, "x"); ArgumentChecker.isTrue(domain.evaluate(x), "point {} is not in the function domain", x.toString()); final double[] y = new double[3]; double[] w; if (!domain.evaluate(x + _eps)) { if (!domain.evaluate(x - _eps)) { throw new MathException("cannot get derivative at point " + x.toString()); } y[0] = function.evaluate(x - _twoEps); y[1] = function.evaluate(x - _eps); y[2] = function.evaluate(x); w = wBack; } else { if (!domain.evaluate(x - _eps)) { y[0] = function.evaluate(x); y[1] = function.evaluate(x + _eps); y[2] = function.evaluate(x + _twoEps); w = wFwd; } else { y[0] = function.evaluate(x - _eps); y[2] = function.evaluate(x + _eps); w = wCent; } } double res = y[0] * w[0] + y[2] * w[2]; if (w[1] != 0) { res += y[1] * w[1]; } return res; } }; } }