Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.number.ComplexNumber; import com.opengamma.util.ArgumentChecker; /** * */ public class ComplexMathUtils { public static ComplexNumber add(final ComplexNumber z1, final ComplexNumber z2) { ArgumentChecker.notNull(z1, "z1"); ArgumentChecker.notNull(z2, "z2"); return new ComplexNumber(z1.getReal() + z2.getReal(), z1.getImaginary() + z2.getImaginary()); } public static ComplexNumber add(final ComplexNumber... z) { ArgumentChecker.notNull(z, "z"); int n = z.length; double res = 0.0; double img = 0.0; for (int i = 0; i < n; i++) { res += z[i].getReal(); img += z[i].getImaginary(); } return new ComplexNumber(res, img); } public static ComplexNumber add(final ComplexNumber z, final double x) { ArgumentChecker.notNull(z, "z"); return new ComplexNumber(z.getReal() + x, z.getImaginary()); } public static ComplexNumber add(final double x, final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); return new ComplexNumber(z.getReal() + x, z.getImaginary()); } public static double arg(final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); return Math.atan2(z.getImaginary(), z.getReal()); } public static ComplexNumber conjugate(final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); return new ComplexNumber(z.getReal(), -z.getImaginary()); } public static ComplexNumber divide(final ComplexNumber z1, final ComplexNumber z2) { ArgumentChecker.notNull(z1, "z1"); ArgumentChecker.notNull(z2, "z2"); final double a = z1.getReal(); final double b = z1.getImaginary(); final double c = z2.getReal(); final double d = z2.getImaginary(); if (Math.abs(c) > Math.abs(d)) { final double dOverC = d / c; final double denom = c + d * dOverC; return new ComplexNumber((a + b * dOverC) / denom, (b - a * dOverC) / denom); } final double cOverD = c / d; final double denom = c * cOverD + d; return new ComplexNumber((a * cOverD + b) / denom, (b * cOverD - a) / denom); } public static ComplexNumber divide(final ComplexNumber z, final double x) { ArgumentChecker.notNull(z, "z"); return new ComplexNumber(z.getReal() / x, z.getImaginary() / x); } public static ComplexNumber divide(final double x, final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); final double c = z.getReal(); final double d = z.getImaginary(); if (Math.abs(c) > Math.abs(d)) { final double dOverC = d / c; final double denom = c + d * dOverC; return new ComplexNumber(x / denom, -x * dOverC / denom); } final double cOverD = c / d; final double denom = c * cOverD + d; return new ComplexNumber(x * cOverD / denom, -x / denom); } public static ComplexNumber exp(final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); final double mult = Math.exp(z.getReal()); return new ComplexNumber(mult * Math.cos(z.getImaginary()), mult * Math.sin(z.getImaginary())); } public static ComplexNumber inverse(final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); final double c = z.getReal(); final double d = z.getImaginary(); if (Math.abs(c) > Math.abs(d)) { final double dOverC = d / c; final double denom = c + d * dOverC; return new ComplexNumber(1 / denom, -dOverC / denom); } final double cOverD = c / d; final double denom = c * cOverD + d; return new ComplexNumber(cOverD / denom, -1 / denom); } /** * Returns the principal value of log, with z the principal argument of z defined to lie in the interval (-pi, pi] * @param z ComplexNumber * @return The log */ public static ComplexNumber log(final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); return new ComplexNumber(Math.log(Math.hypot(z.getReal(), z.getImaginary())), Math.atan2(z.getImaginary(), z.getReal())); } public static double mod(final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); return Math.hypot(z.getReal(), z.getImaginary()); } public static ComplexNumber square(final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); final double a = z.getReal(); final double b = z.getImaginary(); return new ComplexNumber(a * a - b * b, 2 * a * b); } public static ComplexNumber multiply(final ComplexNumber z1, final ComplexNumber z2) { ArgumentChecker.notNull(z1, "z1"); ArgumentChecker.notNull(z2, "z2"); final double a = z1.getReal(); final double b = z1.getImaginary(); final double c = z2.getReal(); final double d = z2.getImaginary(); return new ComplexNumber(a * c - b * d, a * d + b * c); } public static ComplexNumber multiply(final ComplexNumber... z) { ArgumentChecker.notNull(z, "z"); final int n = z.length; Validate.isTrue(n > 0, "nothing to multiply"); if (n == 1) { return z[0]; } else if (n == 2) { return multiply(z[0], z[1]); } else { ComplexNumber product = multiply(z[0], z[1]); for (int i = 2; i < n; i++) { product = multiply(product, z[i]); } return product; } } public static ComplexNumber multiply(final double x, final ComplexNumber... z) { ComplexNumber product = multiply(z); return multiply(x, product); } public static ComplexNumber multiply(final ComplexNumber z, final double x) { ArgumentChecker.notNull(z, "z"); return new ComplexNumber(z.getReal() * x, z.getImaginary() * x); } public static ComplexNumber multiply(final double x, final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); return new ComplexNumber(z.getReal() * x, z.getImaginary() * x); } public static ComplexNumber pow(final ComplexNumber z1, final ComplexNumber z2) { ArgumentChecker.notNull(z1, "z1"); ArgumentChecker.notNull(z2, "z2"); final double mod = mod(z1); final double arg = arg(z1); final double mult = Math.pow(mod, z2.getReal()) * Math.exp(-z2.getImaginary() * arg); final double theta = z2.getReal() * arg + z2.getImaginary() * Math.log(mod); return new ComplexNumber(mult * Math.cos(theta), mult * Math.sin(theta)); } public static ComplexNumber pow(final ComplexNumber z, final double x) { final double mod = mod(z); final double arg = arg(z); final double mult = Math.pow(mod, x); return new ComplexNumber(mult * Math.cos(x * arg), mult * Math.sin(x * arg)); } public static ComplexNumber pow(final double x, final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); return pow(new ComplexNumber(x, 0), z); } public static ComplexNumber sqrt(final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); final double c = z.getReal(); final double d = z.getImaginary(); if (c == 0.0 && d == 0.0) { return z; } double w; if (Math.abs(c) > Math.abs(d)) { final double dOverC = d / c; w = Math.sqrt(Math.abs(c)) * Math.sqrt((1 + Math.sqrt(1 + dOverC * dOverC)) / 2); } else { final double cOverD = c / d; w = Math.sqrt(Math.abs(d)) * Math.sqrt((Math.abs(cOverD) + Math.sqrt(1 + cOverD * cOverD)) / 2); } if (c >= 0.0) { return new ComplexNumber(w, d / 2 / w); } if (d >= 0.0) { return new ComplexNumber(d / 2 / w, w); } return new ComplexNumber(-d / 2 / w, -w); } public static ComplexNumber subtract(final ComplexNumber z1, final ComplexNumber z2) { ArgumentChecker.notNull(z1, "z1"); ArgumentChecker.notNull(z2, "z2"); return new ComplexNumber(z1.getReal() - z2.getReal(), z1.getImaginary() - z2.getImaginary()); } public static ComplexNumber subtract(final ComplexNumber z, final double x) { ArgumentChecker.notNull(z, "z"); return new ComplexNumber(z.getReal() - x, z.getImaginary()); } public static ComplexNumber subtract(final double x, final ComplexNumber z) { ArgumentChecker.notNull(z, "z"); return new ComplexNumber(x - z.getReal(), -z.getImaginary()); } }