Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.timeseries.analysis; import org.apache.commons.lang.Validate; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.statistics.distribution.ChiSquareDistribution; import com.opengamma.timeseries.DoubleTimeSeries; import com.opengamma.util.ArgumentChecker; /** * */ public class LiMcLeodPortmanteauIIDHypothesis extends IIDHypothesis { private static final Logger s_logger = LoggerFactory.getLogger(LiMcLeodPortmanteauIIDHypothesis.class); private final Function1D<DoubleTimeSeries<?>, double[]> _calculator = new AutocorrelationFunctionCalculator(); private final double _criticalValue; private final int _h; public LiMcLeodPortmanteauIIDHypothesis(final double level, final int maxLag) { if (!ArgumentChecker.isInRangeExcludingLow(0, 1, level)) { throw new IllegalArgumentException("Level must be between 0 and 1"); } if (maxLag == 0) { throw new IllegalArgumentException("Lag cannot be zero"); } if (maxLag < 0) { s_logger.info("Lag was negative; using absolute value"); } _h = Math.abs(maxLag); _criticalValue = new ChiSquareDistribution(_h).getInverseCDF(1 - level); } @Override public boolean testIID(final DoubleTimeSeries<?> x) { Validate.notNull(x, "x"); if (x.size() < _h) { throw new IllegalArgumentException("Time series must have at least " + _h + " points"); } final DoubleTimeSeries<?> tsSq = x.multiply(x); final double[] autocorrelation = _calculator.evaluate(tsSq); double q = 0; final int n = x.size(); for (int i = 1; i < _h; i++) { q += autocorrelation[i] * autocorrelation[i] / (n - i); } q *= n * (n + 2); return q < _criticalValue; } }