Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.option.pricing.fourier; import org.apache.commons.lang.Validate; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import com.opengamma.analytics.math.ComplexMathUtils; import com.opengamma.analytics.math.MathException; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.number.ComplexNumber; import com.opengamma.analytics.math.rootfinding.BracketRoot; import com.opengamma.analytics.math.rootfinding.BrentSingleRootFinder; import com.opengamma.analytics.math.rootfinding.RealSingleRootFinder; /** * A calculator to determine the upper limit of the Fourier integral for a * characteristic function $\phi$. * <p> * The upper limit is found by determining the root of the function: * $$ * \begin{align*} * f(x) = \ln\left(\left|\phi(x - i(1 + \alpha))\right|\right) * \end{align*} * $$ * where $\alpha$ is the contour (which is parallel to the real axis and * shifted down by $1 + \alpha$) over which to integrate. * */ public class IntegralLimitCalculator { private static Logger s_log = LoggerFactory.getLogger(IntegralLimitCalculator.class); private static BracketRoot s_bracketRoot = new BracketRoot(); private static final RealSingleRootFinder s_root = new BrentSingleRootFinder(1e-1); /** * * @param psi The characteristic function, not null * @param alpha The value of $\alpha$, not 0 or -1 * @param tol The tolerance for the root * @return The root */ public double solve(final Function1D<ComplexNumber, ComplexNumber> psi, final double alpha, final double tol) { Validate.notNull(psi, "psi null"); Validate.isTrue(alpha != 0.0 && alpha != -1.0, "alpha cannot be -1 or 0"); Validate.isTrue(tol > 0.0, "need tol > 0"); final double k = Math.log(tol) + Math.log(ComplexMathUtils.mod(psi.evaluate(new ComplexNumber(0.0, -(1 + alpha))))); final Function1D<Double, Double> f = new Function1D<Double, Double>() { @Override public Double evaluate(final Double x) { final ComplexNumber z = new ComplexNumber(x, -(1 + alpha)); return Math.log(ComplexMathUtils.mod(psi.evaluate(z))) - k; } }; double[] range = null; try { range = s_bracketRoot.getBracketedPoints(f, 0.0, 200.0); } catch (MathException e) { s_log.warn("Could not find integral limit. Using default of 500"); return 500.0; } return s_root.getRoot(f, range[0], range[1]); } }