Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.option.pricing.fourier; import static com.opengamma.analytics.math.ComplexMathUtils.add; import static com.opengamma.analytics.math.ComplexMathUtils.divide; import static com.opengamma.analytics.math.ComplexMathUtils.exp; import static com.opengamma.analytics.math.ComplexMathUtils.multiply; import static com.opengamma.analytics.math.ComplexMathUtils.subtract; import static com.opengamma.analytics.math.number.ComplexNumber.MINUS_I; import org.apache.commons.lang.ObjectUtils; import org.apache.commons.lang.Validate; import com.opengamma.analytics.financial.model.option.pricing.analytic.formula.BlackFunctionData; import com.opengamma.analytics.financial.model.option.pricing.analytic.formula.EuropeanVanillaOption; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.number.ComplexNumber; /** * */ public class EuropeanPriceIntegrand { private final MartingaleCharacteristicExponent _ce; private final double _alpha; private final boolean _useVarianceReduction; public EuropeanPriceIntegrand(final MartingaleCharacteristicExponent ce, final double alpha, final boolean useVarianceReduction) { Validate.notNull(ce, "characteristic exponent"); _ce = ce; _alpha = alpha; _useVarianceReduction = useVarianceReduction; } public Function1D<Double, Double> getFunction(final BlackFunctionData data, final EuropeanVanillaOption option) { Validate.notNull(data, "data"); Validate.notNull(option, "option"); final double t = option.getTimeToExpiry(); final Function1D<ComplexNumber, ComplexNumber> characteristicFunction = _ce.getFunction(t); final double k = Math.log(option.getStrike() / data.getForward()); final double blackVol = data.getBlackVolatility(); final CharacteristicExponent gaussian; final Function1D<ComplexNumber, ComplexNumber> gaussianFunction; if (_useVarianceReduction) { gaussian = new GaussianCharacteristicExponent(-0.5 * blackVol * blackVol, blackVol); gaussianFunction = gaussian.getFunction(t); } else { gaussian = null; gaussianFunction = null; } return new Function1D<Double, Double>() { @Override public Double evaluate(final Double x) { @SuppressWarnings("synthetic-access") final ComplexNumber res = getIntegrand(x, characteristicFunction, gaussianFunction, k); return res.getReal(); } }; } private ComplexNumber getIntegrand(final double x, final Function1D<ComplexNumber, ComplexNumber> ce, final Function1D<ComplexNumber, ComplexNumber> gaussian, final double k) { final ComplexNumber z = new ComplexNumber(x, -1 - _alpha); final ComplexNumber num1 = exp(add(new ComplexNumber(0, -x * k), ce.evaluate(z))); final ComplexNumber num2 = gaussian == null ? new ComplexNumber(0.0) : exp(add(new ComplexNumber(0, -x * k), gaussian.evaluate(z))); final ComplexNumber denom = multiply(z, subtract(MINUS_I, z)); final ComplexNumber res = divide(subtract(num1, num2), denom); return res; } public MartingaleCharacteristicExponent getCharacteristicExponent() { return _ce; } public double getAlpha() { return _alpha; } public boolean useVarianceReduction() { return _useVarianceReduction; } @Override public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(_alpha); result = prime * result + (int) (temp ^ (temp >>> 32)); result = prime * result + _ce.hashCode(); result = prime * result + (_useVarianceReduction ? 1231 : 1237); return result; } @Override public boolean equals(final Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final EuropeanPriceIntegrand other = (EuropeanPriceIntegrand) obj; if (Double.doubleToLongBits(_alpha) != Double.doubleToLongBits(other._alpha)) { return false; } if (!ObjectUtils.equals(_ce, other._ce)) { return false; } return _useVarianceReduction == other._useVarianceReduction; } }