Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.option.pricing.analytic.twoasset; import org.apache.commons.lang.Validate; import com.opengamma.analytics.financial.model.option.definition.twoasset.RelativeOutperformanceOptionDefinition; import com.opengamma.analytics.financial.model.option.definition.twoasset.StandardTwoAssetOptionDataBundle; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.statistics.distribution.NormalDistribution; import com.opengamma.analytics.math.statistics.distribution.ProbabilityDistribution; /** * The value of a European-style relative outperformance call option is given by: * $$ * \begin{eqnarray*} * c = e^{-rT}\left(F N(d_2) - K N(d_1)\right) * \end{eqnarray*} * $$ * and the value of a put is: * $$ * \begin{eqnarray*} * p = e^{-rT}\left(K N(d_1) - F N(d_2)\right) * \end{eqnarray*} * $$ * where * $$ * \begin{eqnarray*} * F &=& \frac{S_1}{S_2}e^{\left(b_1 - b_2 + \sigma_2^2 - \rho \sigma_1 \sigma_2\right)T}\\ * \hat{\sigma} &=& \sqrt{\sigma_1 ^2 + \sigma_2 ^2 - 2 \rho\sigma_1\sigma_2}\\ * d_1 &=& \frac{\ln{\frac{F}{K}} + \frac{T\hat{\sigma}^2}{2}}{\hat{\sigma} \sqrt{T}}\\ * d_2 &=& d_1 - \hat{\sigma}\sqrt{T} * \end{eqnarray*} * $$ * and * $$ * <ul> * <li>$K$ is the strike</li> * <li>$S_1$ is the spot value of the first asset</li> * <li>$S_2$ is the spot value of the second asset</li> * <li>$b_1$ is the cost-of-carry of the first asset</li> * <li>$b_2$ is the cost-of-carry of the second asset</li> * <li>$T$ is the time to expiry of the option</li> * <li>$r$ is the spot interest rate for time $T$</li> * <li>$\sigma_1$ is the annualized volatility of the first asset</li> * <li>$\sigma_2$ is the annualized volatility of the second asset</li> * <li>$\rho$ is the correlation between the returns of the two assets</li> * <li>$N(x)$ is the CDF of the normal distribution $N(0, 1)$ </li> * </ul> */ public class RelativeOutperformanceOptionModel extends TwoAssetAnalyticOptionModel<RelativeOutperformanceOptionDefinition, StandardTwoAssetOptionDataBundle> { private static final ProbabilityDistribution<Double> NORMAL = new NormalDistribution(0, 1); /** * Gets the pricing function for a European-style relative outperformance option * @param definition The option definition * @return The pricing function * @throws IllegalArgumentException If the definition is null */ @Override public Function1D<StandardTwoAssetOptionDataBundle, Double> getPricingFunction( final RelativeOutperformanceOptionDefinition definition) { Validate.notNull(definition, "definition"); return new Function1D<StandardTwoAssetOptionDataBundle, Double>() { @SuppressWarnings("synthetic-access") @Override public Double evaluate(final StandardTwoAssetOptionDataBundle data) { Validate.notNull(data, "data"); final double s1 = data.getFirstSpot(); final double s2 = data.getSecondSpot(); final double k = definition.getStrike(); final double b1 = data.getFirstCostOfCarry(); final double b2 = data.getSecondCostOfCarry(); final double t = definition.getTimeToExpiry(data.getDate()); final double r = data.getInterestRate(t); final double sigma1 = data.getFirstVolatility(t, k); final double sigma2 = data.getSecondVolatility(t, k); final double rho = data.getCorrelation(); final double sigma = Math.sqrt(sigma1 * sigma1 + sigma2 * sigma2 - 2 * rho * sigma1 * sigma2); final double sigmaT = sigma * Math.sqrt(t); final double f = s1 * Math.exp(t * (b1 - b2 + sigma2 * sigma2 - rho * sigma1 * sigma2)) / s2; final double d1 = (Math.log(f / k) + t * sigma * sigma / 2) / sigmaT; final double d2 = d1 - sigmaT; final int sign = definition.isCall() ? 1 : -1; return Math.exp(-r * t) * sign * (f * NORMAL.getCDF(sign * d1) - k * NORMAL.getCDF(sign * d2)); } }; } }