Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.option.pricing.analytic; import org.apache.commons.lang.Validate; import com.opengamma.analytics.financial.model.option.definition.SimpleChooserOptionDefinition; import com.opengamma.analytics.financial.model.option.definition.StandardOptionDataBundle; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.statistics.distribution.NormalDistribution; import com.opengamma.analytics.math.statistics.distribution.ProbabilityDistribution; import com.opengamma.util.time.DateUtils; /** * Pricing model for capped power options (see {@link com.opengamma.analytics.financial.model.option.definition.CappedPowerOptionDefinition}). * <p> * The price of this option is given by: * $$ * \begin{align*} * p = Se^{(b-r)T_2}N(d_1) - Ke^{-rT_2}N(d_1 - \sigma\sqrt{T_2}) - Se^{(b-r)T_2}N(-d_2) + Ke^{-rT_2}N(-d_2 + \sigma\sqrt{T_1}) * \end{align*} * $$ * where $T_1$ is the time to make the choice and * $$ * \begin{align*} * d_1 &= \frac{\ln(\frac{S}{K}) + (b + \frac{\sigma^2}{2})T_2}{\sigma\sqrt{T_1}}\\ * d_2 &= \frac{\ln(\frac{S}{K}) + bT_2 + \frac{\sigma^2 T_1}{2}}{\sigma\sqrt{T_1}} * \end{align*} * $$ */ public class SimpleChooserOptionModel extends AnalyticOptionModel<SimpleChooserOptionDefinition, StandardOptionDataBundle> { private static final ProbabilityDistribution<Double> NORMAL = new NormalDistribution(0, 1); /** * {@inheritDoc} */ @Override public Function1D<StandardOptionDataBundle, Double> getPricingFunction( final SimpleChooserOptionDefinition definition) { Validate.notNull(definition); final Function1D<StandardOptionDataBundle, Double> pricingFunction = new Function1D<StandardOptionDataBundle, Double>() { @SuppressWarnings("synthetic-access") @Override public Double evaluate(final StandardOptionDataBundle data) { Validate.notNull(data); final double s = data.getSpot(); final double k = definition.getUnderlyingStrike(); final double t1 = definition.getTimeToExpiry(data.getDate()); final double t2 = DateUtils.getDifferenceInYears(data.getDate(), definition.getUnderlyingExpiry().getExpiry()); final double b = data.getCostOfCarry(); final double r = data.getInterestRate(t1); final double sigma = data.getVolatility(t1, k); final double sigmaT1 = sigma * Math.sqrt(t1); final double sigmaT2 = sigma * Math.sqrt(t2); final double sigmaSq = sigma * sigma / 2.; final double logSK = Math.log(s / k); final double bT2 = b * t2; final double d = getD(logSK, bT2, sigmaSq * t2, sigmaT2); final double y = getD(logSK, bT2, sigmaSq * t1, sigmaT1); final double df1 = getDF(r, b, t2); final double df2 = getDF(r, 0, t2); return s * df1 * (NORMAL.getCDF(d) - NORMAL.getCDF(-y)) - k * df2 * (NORMAL.getCDF(d - sigmaT2) - NORMAL.getCDF(-y + sigmaT1)); } }; return pricingFunction; } double getD(final double x, final double y, final double z, final double sigmaT) { return (x + y + z) / sigmaT; } }