Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.option.pricing.analytic; import org.apache.commons.lang.Validate; import com.opengamma.analytics.financial.model.option.definition.PoweredOptionDefinition; import com.opengamma.analytics.financial.model.option.definition.StandardOptionDataBundle; import com.opengamma.analytics.financial.model.option.pricing.OptionPricingException; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.statistics.distribution.NormalDistribution; import com.opengamma.analytics.math.statistics.distribution.ProbabilityDistribution; /** * Analytic pricing model for powered options. *This model is only valid for options with an integer power.* * <p> * The price of a powered option is: * $$ * \begin{align*} * c &= \sum_{j=0}^i \frac{i!}{j!(i-j)!}S^{i-j}(-K)^j e^{(i-j-1)(r + (i-j)\frac{\sigma^2}{2})T - (i-j)(r-b)T}N(d_{i,j})\\ * p &= \sum_{j=0}^i \frac{i!}{j!(i-j)!}(-S)^{i-j}K^j e^{(i-j-1)(r + (i-j)\frac{\sigma^2}{2})T - (i-j)(r-b)T}N(-d_{i,j})\\ * \end{align*} * $$ * where * $$ * \begin{align*} * d_{i,j} = \frac{\ln(\frac{S}{K}) + (b + (i - j - \frac{1}{2})\sigma^2)T}{\sigma\sqrt{T}} * \end{align*} * $$ * */ public class PoweredOptionModel extends AnalyticOptionModel<PoweredOptionDefinition, StandardOptionDataBundle> { private static final ProbabilityDistribution<Double> NORMAL = new NormalDistribution(0, 1); /** * {@inheritDoc} */ @Override public Function1D<StandardOptionDataBundle, Double> getPricingFunction( final PoweredOptionDefinition definition) { Validate.notNull(definition); final Function1D<StandardOptionDataBundle, Double> pricingFunction = new Function1D<StandardOptionDataBundle, Double>() { /** * @throws OptionPricingException If the power is not an integer. */ @SuppressWarnings("synthetic-access") @Override public Double evaluate(final StandardOptionDataBundle data) { Validate.notNull(data); if (Math.abs(definition.getPower() - Math.round(definition.getPower())) > 1e-15) { throw new OptionPricingException( "Analytic powered option pricing model can only be used when then power is an integer"); } final double s = data.getSpot(); final double k = definition.getStrike(); final double t = definition.getTimeToExpiry(data.getDate()); final double b = data.getCostOfCarry(); final double r = data.getInterestRate(t); final double sigma = data.getVolatility(t, k); final long power = Math.round(definition.getPower()); final int sign = definition.isCall() ? 1 : -1; final double sigmaSq = sigma * sigma; final double sigmaT = sigma * Math.sqrt(t); final double x = (Math.log(s / k) + t * (b - 0.5 * sigma * sigma)) / sigmaT; long diff; double price = 0; for (int i = 0; i <= power; i++) { diff = power - i; price += getCombinatorial(power, i) * Math.pow(sign * s, diff) * Math.pow(-sign * k, i) * Math.exp((diff - 1) * (r + diff * sigmaSq / 2.) * t - diff * (r - b) * t) * NORMAL.getCDF(sign * getD(x, diff, sigmaT, sigmaSq, t)); } return price; } }; return pricingFunction; } long getFactorial(final long i) { if (i == 0) { return 1; } if (i <= 2) { return i; } long result = 2; for (int j = 3; j <= i; j++) { result *= j; } return result; } long getCombinatorial(final long i, final long j) { return getFactorial(i) / (getFactorial(j) * (getFactorial(i - j))); } double getD(final double x, final double diff, final double sigmaT, final double sigmaSq, final double t) { return x + diff * sigmaSq * t / sigmaT; } }