Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.option.pricing.analytic; import org.apache.commons.lang.Validate; import com.opengamma.analytics.financial.model.option.definition.GapOptionDefinition; import com.opengamma.analytics.financial.model.option.definition.StandardOptionDataBundle; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.statistics.distribution.NormalDistribution; import com.opengamma.analytics.math.statistics.distribution.ProbabilityDistribution; /** * Class for pricing gap options (see {@link com.opengamma.analytics.financial.model.option.definition.GapOptionDefinition}). * <p> * The price is calculated using the Reiner-Rubenstein formula: * $$ * \begin{align*} * c &= S e^{(b-r)T}N(d_1) - K_2 e^{-rT}N(d_2)\\ * p &= K_2 e^{-rT}N(-d_2) - S e^{(b-r)T}N(-d_1) * \end{align*} * $$ * where * $$ * \begin{align*} * d_1 = \frac{\ln{\frac{S}{K_1}} + (b + \frac{\sigma^2}{2})T}{\sigma\sqrt{T}} * \end{align*} * $$ * and * $$ * \begin{align*} * d_2 = d_1 - \sigma\sqrt{T} * \end{align*} * $$ * */ public class GapOptionModel extends AnalyticOptionModel<GapOptionDefinition, StandardOptionDataBundle> { private static final ProbabilityDistribution<Double> NORMAL = new NormalDistribution(0, 1); /** * {@inheritDoc} */ @Override public Function1D<StandardOptionDataBundle, Double> getPricingFunction(final GapOptionDefinition definition) { Validate.notNull(definition, "definition"); return new Function1D<StandardOptionDataBundle, Double>() { @SuppressWarnings("synthetic-access") @Override public Double evaluate(final StandardOptionDataBundle data) { Validate.notNull(data, "data"); final double s = data.getSpot(); final double k = definition.getStrike(); final double t = definition.getTimeToExpiry(data.getDate()); final double r = data.getInterestRate(t); final double sigma = data.getVolatility(t, k); final double b = data.getCostOfCarry(); final double payoffStrike = definition.getPayoffStrike(); final int sign = definition.isCall() ? 1 : -1; final double d1 = getD1(s, k, t, sigma, b); final double d2 = getD2(d1, sigma, t); return sign * (s * Math.exp(t * (b - r)) * NORMAL.getCDF(sign * d1) - payoffStrike * Math.exp(-r * t) * NORMAL.getCDF(sign * d2)); } }; } }