Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.option.pricing.analytic; import java.util.Set; import org.apache.commons.lang.NotImplementedException; import org.apache.commons.lang.Validate; import org.threeten.bp.ZonedDateTime; import com.google.common.collect.Sets; import com.opengamma.analytics.financial.greeks.Greek; import com.opengamma.analytics.financial.greeks.GreekResultCollection; import com.opengamma.analytics.financial.model.option.definition.EuropeanOptionOnEuropeanVanillaOptionDefinition; import com.opengamma.analytics.financial.model.option.definition.EuropeanVanillaOptionDefinition; import com.opengamma.analytics.financial.model.option.definition.OptionDefinition; import com.opengamma.analytics.financial.model.option.definition.StandardOptionDataBundle; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.statistics.distribution.NormalDistribution; import com.opengamma.analytics.math.statistics.distribution.ProbabilityDistribution; /** * This model can be used to approximate the value of call-on-call or * put-on-call options. It is most accurate for at- and in-the-money options. * <p> * The value of a call-on-call option can be approximated by: * $$ * \begin{align*} * c_{call} \approx c_{BSM}N(d_1) - K_2e^{-rT_2}N(d2) * \end{align*} * $$ * where * $$ * \begin{align*} * d1 &= \frac{\ln(\frac{c_{BSM}}{K_2}) + (b + \frac{\hat{\sigma^2}}{2})T_2}{\hat{\sigma}\sqrt{T_2}}\\ * \hat{\sigma} &= \frac{\sigma|\Delta_{BSM}|S}{c_{BSM}}\\ * c_{BSM} &= c_{BSM}(S, K_1, T_1, r, b, \sigma)\\ * \Delta_{BSM} &= \Delta_{BSM}(S, K_1, T_1, r, b, \sigma) * \end{align*} * $$ * where $K_1$ is the strike on the underlying option, $T_1$ is the expiry of * the underlying option, $K_2$ is the strike of the option-on-option, $T_2$ is * the expiry of the option-on-option, and $BSM$ is the standard * Black-Scholes-Merton pricing model ({@link BlackScholesMertonModel}). * <p> * The value of a put-on-call can be approximated by: * $$ * \begin{align*} * p_{call} \approx K_2e^{-eT_2}N(d_2) - c_{BSM}N(d_1) * \end{align*} * $$ */ public class BensoussanCrouhyGalaiOptionOnOptionModel extends AnalyticOptionModel<EuropeanOptionOnEuropeanVanillaOptionDefinition, StandardOptionDataBundle> { private static final ProbabilityDistribution<Double> NORMAL = new NormalDistribution(0, 1); private static final BlackScholesMertonModel BSM = new BlackScholesMertonModel(); private static final Set<Greek> REQUIRED_GREEKS = Sets.newHashSet(Greek.FAIR_PRICE, Greek.DELTA); /** * {@inheritDoc} */ @Override public Function1D<StandardOptionDataBundle, Double> getPricingFunction( final EuropeanOptionOnEuropeanVanillaOptionDefinition definition) { Validate.notNull(definition, "definition"); return new Function1D<StandardOptionDataBundle, Double>() { @SuppressWarnings("synthetic-access") @Override public Double evaluate(final StandardOptionDataBundle data) { Validate.notNull(data, "data"); final double s = data.getSpot(); final OptionDefinition underlying = definition.getUnderlyingOption(); final double k1 = definition.getStrike(); final double k2 = underlying.getStrike(); final ZonedDateTime date = data.getDate(); final double t1 = definition.getTimeToExpiry(date); final double sigma = data.getVolatility(t1, k1); final double r = data.getInterestRate(t1); final double b = data.getCostOfCarry(); final OptionDefinition callDefinition = underlying.isCall() ? underlying : new EuropeanVanillaOptionDefinition(k2, underlying.getExpiry(), true); final GreekResultCollection result = BSM.getGreeks(callDefinition, data, REQUIRED_GREEKS); final double callBSM = result.get(Greek.FAIR_PRICE); final double callDelta = result.get(Greek.DELTA); final double underlyingSigma = sigma * Math.abs(callDelta) * s / callBSM; final double d1 = getD1(callBSM, k1, t1, underlyingSigma, b); final double d2 = getD2(d1, underlyingSigma, t1); final int sign = definition.isCall() ? 1 : -1; if (underlying.isCall()) { return sign * (callBSM * NORMAL.getCDF(sign * d1) - k1 * Math.exp(-r * t1) * NORMAL.getCDF(sign * d2)); } throw new NotImplementedException("This model can only price call-on-call or put-on-call options"); } }; } }