Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.option.pricing.analytic; import org.apache.commons.lang.Validate; import org.threeten.bp.ZonedDateTime; import com.opengamma.analytics.financial.model.interestrate.curve.YieldAndDiscountCurve; import com.opengamma.analytics.financial.model.option.definition.BatesGeneralizedJumpDiffusionModelDataBundle; import com.opengamma.analytics.financial.model.option.definition.OptionDefinition; import com.opengamma.analytics.financial.model.option.definition.StandardOptionDataBundle; import com.opengamma.analytics.financial.model.volatility.surface.VolatilitySurface; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.surface.ConstantDoublesSurface; /** * The Bates generalized jump-diffusion model prices options with an underlying process: * $$ * \begin{align*} * dS = (b - \lambda \overline{k})S dt + \sigma S dz + k dq * \end{align*} * $$ * with $S$ the spot, $b$ the cost-of-carry, $\sigma$ the volatility of the * (relative) price change based on no jumps, $dz$ a Brownian motion, $k$ a * random percentage jump conditional on a Poisson-distributed event occurring, * with ($1+k$) lognormally distributed, $\overline{k}$ the expected jump size, * $\lambda$ the frequency of events (the average number of events per year) * and $q$ a Poisson counter with intensity $\lambda$. * <p> * The price of an option can be calculated using: * $$ * \begin{align*} * c &= \sum_{i=0}^{\infty} \frac{e^{-\lambda T}(\lambda T)^i}{i!}c_i(S, K, T, r, b_i, \sigma_i)\\ * p &= \sum_{i=0}^{\infty} \frac{e^{-\lambda T}(\lambda T)^i}{i!}p_i(S, K, T, r, b_i, \sigma_i) * \end{align*} * $$ * where * $$ * \begin{align*} * b_i &= b - \lambda \overline{k} + \frac{i\overline{\gamma}}{T}\\ * \sigma_i &= \sqrt{\sigma^2 + \delta^2\frac{i}{T}}\\ * \overline{\gamma} &= \ln(1 + \overline{k}) * \end{align*} * $$ * and $\delta$ is the standard deviation of log asset price jumps. */ public class BatesGeneralizedJumpDiffusionModel extends AnalyticOptionModel<OptionDefinition, BatesGeneralizedJumpDiffusionModelDataBundle> { private static final AnalyticOptionModel<OptionDefinition, StandardOptionDataBundle> BSM = new BlackScholesMertonModel(); private static final int N = 50; /** * {@inheritDoc} */ @Override public Function1D<BatesGeneralizedJumpDiffusionModelDataBundle, Double> getPricingFunction( final OptionDefinition definition) { Validate.notNull(definition); final Function1D<BatesGeneralizedJumpDiffusionModelDataBundle, Double> pricingFunction = new Function1D<BatesGeneralizedJumpDiffusionModelDataBundle, Double>() { @SuppressWarnings("synthetic-access") @Override public Double evaluate(final BatesGeneralizedJumpDiffusionModelDataBundle data) { Validate.notNull(data); final double s = data.getSpot(); final YieldAndDiscountCurve discountCurve = data.getInterestRateCurve(); final VolatilitySurface volSurface = data.getVolatilitySurface(); final ZonedDateTime date = data.getDate(); final double t = definition.getTimeToExpiry(date); final double k = definition.getStrike(); final double sigma = data.getVolatility(t, k); double b = data.getCostOfCarry(); final double lambda = data.getLambda(); final double expectedJumpSize = data.getExpectedJumpSize(); final double delta = data.getDelta(); final double gamma = Math.log(1 + expectedJumpSize); final double sigmaSq = sigma * sigma; double z; final double lambdaT = lambda * t; double mult = Math.exp(-lambdaT); b -= lambda * expectedJumpSize; StandardOptionDataBundle bsmData = new StandardOptionDataBundle(discountCurve, b, volSurface, s, date); final Function1D<StandardOptionDataBundle, Double> bsmFunction = BSM.getPricingFunction(definition); double price = mult * bsmFunction.evaluate(bsmData); for (int i = 1; i < N; i++) { z = Math.sqrt(sigmaSq + delta * delta * i / t); b += gamma / t; bsmData = bsmData.withVolatilitySurface(new VolatilitySurface(ConstantDoublesSurface.from(z))) .withCostOfCarry(b); mult *= lambdaT / i; price += mult * bsmFunction.evaluate(bsmData); } return price; } }; return pricingFunction; } }