Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.option.pricing.analytic; import org.apache.commons.lang.Validate; import com.opengamma.analytics.financial.model.option.definition.AsymmetricPowerOptionDefinition; import com.opengamma.analytics.financial.model.option.definition.StandardOptionDataBundle; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.statistics.distribution.NormalDistribution; import com.opengamma.analytics.math.statistics.distribution.ProbabilityDistribution; /** * Pricing model for asymmetric power options (see {@link com.opengamma.analytics.financial.model.option.definition.AsymmetricPowerOptionDefinition}). * <p> * The price of a call is given by: * $$ * \begin{align*} * c = S^i e^{[(i-1)(r + \frac{i\sigma^2}{2}) - i(r-b)]T}N(d_1) - Ke^{-rT}N(d_2) * \end{align*} * $$ * and of a put by: * $$ * \begin{align*} * p = Ke^{-rT}N(-d_2) - S^i e^{[(i-1)(r + \frac{i\sigma^2}{2}) - i(r-b)]T}N(-d_1) * \end{align*} * $$ * where * $$ * \begin{align*} * d_1 = \frac{\ln\left(\frac{S}{K^{\frac{1}{i}}}\right) + (b + (i - \frac{1}{2})\sigma^2)T}{\sigma\sqrt{T}} * \end{align*} * $$ * and * $$ * \begin{align*} * d_2 = d_1 - i\sigma\sqrt{T} * \end{align*} * $$ */ public class AsymmetricPowerOptionModel extends AnalyticOptionModel<AsymmetricPowerOptionDefinition, StandardOptionDataBundle> { private static final ProbabilityDistribution<Double> NORMAL = new NormalDistribution(0, 1); /** * {@inheritDoc} */ @Override public Function1D<StandardOptionDataBundle, Double> getPricingFunction( final AsymmetricPowerOptionDefinition definition) { Validate.notNull(definition); final Function1D<StandardOptionDataBundle, Double> pricingFunction = new Function1D<StandardOptionDataBundle, Double>() { @SuppressWarnings("synthetic-access") @Override public Double evaluate(final StandardOptionDataBundle data) { Validate.notNull(data); final double s = data.getSpot(); final double k = definition.getStrike(); final double t = definition.getTimeToExpiry(data.getDate()); final double sigma = data.getVolatility(t, k); final double r = data.getInterestRate(t); final double b = data.getCostOfCarry(); final double power = definition.getPower(); final double sigmaT = sigma * Math.sqrt(t); final double d1 = (Math.log(s / Math.pow(k, 1. / power)) + t * (b + sigma * sigma * (power - 0.5))) / sigmaT; final double d2 = d1 - power * sigmaT; final int sign = definition.isCall() ? 1 : -1; final double df1 = Math .exp(((power - 1) * (r + power * sigma * sigma * 0.5) - power * (r - b)) * t); final double df2 = Math.exp(-r * t); return sign * (Math.pow(s, power) * df1 * NORMAL.getCDF(sign * d1) - df2 * k * NORMAL.getCDF(sign * d2)); } }; return pricingFunction; } }