Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.finitedifference; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.FunctionUtils; import com.opengamma.util.ArgumentChecker; /** * */ public class ExponentialMeshing extends MeshingFunction { private final double[] _fpValues; private final UniformMeshing _um; private final double _theta; private final double _eta; private final double _lambda; private final boolean _linear; private final double _l; private final double _r; /** * creates a non-uniform set of points according to the formula $x_i = \theta + \eta*\exp(\lambda z_i)$, where the points run from * $x_0$ to $x_{N-1}$ (i.e. there are N points), $\eta = (x_{N-1} - x_0)/(\exp(\lambda) - 1)$ and $\theta = x_0 - \eta$. The points $z_i$ are uniform on (0,1) and * given by $z_i = i/(N-1)$. * @param lowerBound The value of $x_0$ * @param upperBound The value of $x_{N-1}$ * @param nPoints Number of Points (equal to N in the above formula) * @param lambda Bunching parameter. $\lambda = 0$ is uniform, $\lambda > 0$ gives a high density of points near $x_0$ and $\lambda < 0$ gives a high density * of points near $x_{N-1}$ */ public ExponentialMeshing(final double lowerBound, final double upperBound, final int nPoints, final double lambda) { super(nPoints); Validate.isTrue(upperBound > lowerBound, "need upperBound>lowerBound"); _l = lowerBound; _r = upperBound; _lambda = lambda; if (lambda == 0.0) { _linear = true; _theta = lowerBound; _eta = (upperBound - lowerBound); } else { _linear = false; _eta = (upperBound - lowerBound) / (Math.exp(lambda) - 1); _theta = lowerBound - _eta; } _um = new UniformMeshing(nPoints); _fpValues = null; } /** * creates a non-uniform set of points according to the formula $x_i = \theta + \eta*\exp(\lambda z_i)$, where the points run from * $x_0$ to $x_{N-1}$ (i.e. there are N points), $\eta = (x_{N-1} - x_0)/(\exp(\lambda) - 1)$ and $\theta = x_0 - \eta$. * The points $z_i$ are are close as possible to uniform on (0,1) while allowing the <em>fixedPoints</em> to be in the set of points. * @param lowerBound The value of $x_0$ * @param upperBound The value of $x_{N-1}$ * @param nPoints Number of Points (equal to N in the above formula).The number of points must exceed the number of fixed points by at least 2. * @param lambda Bunching parameter. $\lambda = 0$ is uniform, $\lambda > 0$ gives a high density of points near $x_0$ and $\lambda < 0$ gives a high density * of points near $x_{N-1}$ * @param fixedPoints set of points that must be included. These must be within the lower and upper bound (exclusive) */ public ExponentialMeshing(final double lowerBound, final double upperBound, final int nPoints, final double lambda, final double[] fixedPoints) { super(nPoints); Validate.isTrue(upperBound > lowerBound, "need upperBound>lowerBound"); ArgumentChecker.notNull(fixedPoints, "null fixedPoints"); _lambda = lambda; _l = lowerBound; _r = upperBound; _fpValues = FunctionUtils.unique(fixedPoints); int m = _fpValues.length; final double[] fp = new double[m]; if (lambda == 0.0) { _linear = true; _theta = lowerBound; _eta = (upperBound - lowerBound); for (int ii = 0; ii < m; ii++) { fp[ii] = (fixedPoints[ii] - _theta) / _eta; } } else { _linear = false; _eta = (upperBound - lowerBound) / (Math.exp(lambda) - 1); _theta = lowerBound - _eta; for (int ii = 0; ii < m; ii++) { fp[ii] = Math.log((_fpValues[ii] - _theta) / _eta) / lambda; } } _um = new UniformMeshing(nPoints, fp); } @Override public Double evaluate(final Integer i) { Validate.isTrue(i >= 0 && i < getNumberOfPoints(), "i out of range"); if (i == 0) { return _l; } if (i == getNumberOfPoints() - 1) { return _r; } //short cut if required point is one of the specified fixed points if (_fpValues != null) { int index = _um.getFixedPointIndex(i); if (index >= 0) { return _fpValues[index]; } } final double z = _um.evaluate(i); if (_linear) { return _theta + _eta * z; } return _theta + _eta * Math.exp(z * _lambda); } }