com.opengamma.analytics.financial.interestrate.swaption.provider.SwaptionBermudaFixedIborHullWhiteNumericalIntegrationMethod.java Source code

Java tutorial

Introduction

Here is the source code for com.opengamma.analytics.financial.interestrate.swaption.provider.SwaptionBermudaFixedIborHullWhiteNumericalIntegrationMethod.java

Source

/**
 * Copyright (C) 2011 - present by OpenGamma Inc. and the OpenGamma group of companies
 * 
 * Please see distribution for license.
 */
package com.opengamma.analytics.financial.interestrate.swaption.provider;

import java.util.Arrays;

import org.apache.commons.lang.Validate;

import com.opengamma.analytics.financial.interestrate.annuity.derivative.AnnuityPaymentFixed;
import com.opengamma.analytics.financial.interestrate.swaption.derivative.SwaptionBermudaFixedIbor;
import com.opengamma.analytics.financial.model.interestrate.HullWhiteOneFactorPiecewiseConstantInterestRateModel;
import com.opengamma.analytics.financial.model.interestrate.definition.HullWhiteOneFactorPiecewiseConstantParameters;
import com.opengamma.analytics.financial.provider.calculator.discounting.CashFlowEquivalentCalculator;
import com.opengamma.analytics.financial.provider.description.interestrate.HullWhiteOneFactorProviderInterface;
import com.opengamma.analytics.financial.provider.description.interestrate.MulticurveProviderInterface;
import com.opengamma.analytics.math.statistics.distribution.NormalDistribution;
import com.opengamma.analytics.math.statistics.distribution.ProbabilityDistribution;
import com.opengamma.util.ArgumentChecker;
import com.opengamma.util.money.Currency;
import com.opengamma.util.money.MultipleCurrencyAmount;

/**
 * Method to compute the present value of Bermuda swaptions with the Hull-White one factor model by numerical integration.
 * Reference: Henrard, M. Bermudan Swaptions in Gaussian HJM One-Factor Model: Analytical and Numerical Approaches. SSRN, October 2008. Available at SSRN: http://ssrn.com/abstract=1287982
 */
public final class SwaptionBermudaFixedIborHullWhiteNumericalIntegrationMethod {

    /**
     * The method unique instance.
     */
    private static final SwaptionBermudaFixedIborHullWhiteNumericalIntegrationMethod INSTANCE = new SwaptionBermudaFixedIborHullWhiteNumericalIntegrationMethod();

    /**
     * Return the unique instance of the class.
     * @return The instance.
     */
    public static SwaptionBermudaFixedIborHullWhiteNumericalIntegrationMethod getInstance() {
        return INSTANCE;
    }

    /**
     * Private constructor.
     */
    private SwaptionBermudaFixedIborHullWhiteNumericalIntegrationMethod() {
    }

    // TODO: The number of integration points should be a setting.
    /**
     * The number of points used in the numerical integration process.
     */
    private static final int NB_POINT = 50;
    /**
     * The cash flow equivalent calculator used in computations.
     */
    private static final CashFlowEquivalentCalculator CFEC = CashFlowEquivalentCalculator.getInstance();
    /**
     * The model used in computations.
     */
    private static final HullWhiteOneFactorPiecewiseConstantInterestRateModel MODEL = new HullWhiteOneFactorPiecewiseConstantInterestRateModel();
    /**
     * The normal distribution implementation.
     */
    private static final ProbabilityDistribution<Double> NORMAL = new NormalDistribution(0, 1);

    /**
     * Computes the present value of the Physical delivery swaption.
     * @param swaption The swaption.
     * @param hullWhite The Hull-White parameters and the curves.
     * @return The present value.
     */
    public MultipleCurrencyAmount presentValue(final SwaptionBermudaFixedIbor swaption,
            final HullWhiteOneFactorProviderInterface hullWhite) {
        ArgumentChecker.notNull(swaption, "Swaption");
        ArgumentChecker.notNull(hullWhite, "Hull-White provider");
        MulticurveProviderInterface multicurves = hullWhite.getMulticurveProvider();
        HullWhiteOneFactorPiecewiseConstantParameters parameters = hullWhite.getHullWhiteParameters();
        Currency ccy = swaption.getCurrency();
        final int nbExpiry = swaption.getExpiryTime().length;
        Validate.isTrue(nbExpiry > 1, "At least two expiry dates required for this method");

        double tmpdb;

        final double[] theta = new double[nbExpiry + 1]; // Extended expiry time (with 0).
        theta[0] = 0.0;
        System.arraycopy(swaption.getExpiryTime(), 0, theta, 1, nbExpiry);
        final AnnuityPaymentFixed[] cashflow = new AnnuityPaymentFixed[nbExpiry];
        for (int loopexp = 0; loopexp < nbExpiry; loopexp++) {
            cashflow[loopexp] = swaption.getUnderlyingSwap()[loopexp].accept(CFEC, multicurves);
        }
        final int[] n = new int[nbExpiry];
        final double[][][] alpha = new double[nbExpiry][][];
        final double[][][] alpha2 = new double[nbExpiry][][]; // alpha^2

        for (int loopexp = 0; loopexp < nbExpiry; loopexp++) {
            n[loopexp] = cashflow[loopexp].getNumberOfPayments();
            alpha[loopexp] = new double[loopexp + 1][];
            alpha2[loopexp] = new double[loopexp + 1][];
            for (int k = 0; k <= loopexp; k++) {
                alpha[loopexp][k] = new double[n[loopexp]];
                alpha2[loopexp][k] = new double[n[loopexp]];
                for (int l = 0; l < alpha[loopexp][k].length; l++) {
                    alpha[loopexp][k][l] = MODEL.alpha(parameters, theta[k], theta[k + 1], theta[k + 1],
                            cashflow[loopexp].getNthPayment(l).getPaymentTime());
                    alpha2[loopexp][k][l] = alpha[loopexp][k][l] * alpha[loopexp][k][l];
                }
            }
        }

        final int nbPoint2 = 2 * NB_POINT + 1;
        final int[] startInt = new int[nbExpiry - 1];
        final int[] endInt = new int[nbExpiry - 1];
        for (int i = 1; i < nbExpiry - 1; i++) {
            startInt[i] = 0;
            endInt[i] = nbPoint2 - 1;
        }
        startInt[0] = NB_POINT;
        endInt[0] = NB_POINT;

        final double[][] t = new double[nbExpiry][]; // payment time
        final double[][] dfS = new double[nbExpiry][]; // discount factor
        final double[] beta = new double[nbExpiry];
        final double[][] h = new double[nbExpiry][];
        final double[][] sa2 = new double[nbExpiry][];

        for (int loopexp = 0; loopexp < nbExpiry; loopexp++) {
            beta[loopexp] = MODEL.beta(parameters, theta[loopexp], theta[loopexp + 1]);
            t[loopexp] = new double[n[loopexp]];
            dfS[loopexp] = new double[n[loopexp]];
            h[loopexp] = new double[n[loopexp]];
            sa2[loopexp] = new double[n[loopexp]];
            for (int loopcf = 0; loopcf < n[loopexp]; loopcf++) {
                t[loopexp][loopcf] = cashflow[loopexp].getNthPayment(loopcf).getPaymentTime();
                dfS[loopexp][loopcf] = multicurves.getDiscountFactor(ccy, t[loopexp][loopcf]);
                h[loopexp][loopcf] = (1 - Math.exp(-parameters.getMeanReversion() * t[loopexp][loopcf]))
                        / parameters.getMeanReversion();
                tmpdb = 0.0;
                for (int k = 0; k <= loopexp; k++) {
                    tmpdb += alpha2[loopexp][k][loopcf];
                }
                sa2[loopexp][loopcf] = tmpdb;
            }
        }
        final double[] discountedCashFlowN = new double[n[nbExpiry - 1]];
        for (int loopcf = 0; loopcf < n[nbExpiry - 1]; loopcf++) {
            discountedCashFlowN[loopcf] = dfS[nbExpiry - 1][loopcf]
                    * cashflow[nbExpiry - 1].getNthPayment(loopcf).getAmount();
        }
        final double lambda = MODEL.lambda(discountedCashFlowN, sa2[nbExpiry - 1], h[nbExpiry - 1]);
        final double[] betaSort = new double[nbExpiry];
        System.arraycopy(beta, 0, betaSort, 0, nbExpiry);
        Arrays.sort(betaSort);
        final double minbeta = betaSort[0];
        final double maxbeta = betaSort[nbExpiry - 1];

        final double b = Math.min(10 * minbeta, maxbeta);
        final double epsilon = -2.0 / NB_POINT * NORMAL.getInverseCDF(1.0 / (200.0 * NB_POINT)) * b; // <-
        final double[] bX = new double[nbPoint2];
        for (int looppt = 0; looppt < nbPoint2; looppt++) {
            bX[looppt] = -NB_POINT * epsilon + looppt * epsilon;
        }
        final double[] bX2 = new double[4 * NB_POINT + 1];
        for (int looppt = 0; looppt < 4 * NB_POINT + 1; looppt++) {
            bX2[looppt] = -2 * NB_POINT * epsilon + looppt * epsilon;
        }
        final double[] htheta = new double[nbExpiry];
        for (int loopexp = 0; loopexp < nbExpiry; loopexp++) {
            htheta[loopexp] = (1 - Math.exp(-parameters.getMeanReversion() * theta[loopexp + 1]))
                    / parameters.getMeanReversion();
        }

        final double[][] vZ = new double[nbExpiry - 1][nbPoint2];
        for (int i = nbExpiry - 2; i >= 0; i--) {
            for (int looppt = 0; looppt < nbPoint2; looppt++) {
                vZ[i][looppt] = Math.exp(bX[looppt] * htheta[i]);
            }
        }

        final double[][] vW = new double[nbExpiry][]; // Swaption
        final double[][] vT = new double[nbExpiry - 1][]; // Swap

        final double omega = -Math.signum(cashflow[nbExpiry - 1].getNthPayment(0).getAmount());
        final double[] kappaL = new double[nbPoint2];
        for (int looppt = 0; looppt < nbPoint2; looppt++) {
            kappaL[looppt] = (lambda - bX[looppt]) / beta[nbExpiry - 1];
        }

        final double[] sa2N1 = new double[n[nbExpiry - 1]];
        for (int i = 0; i < n[nbExpiry - 1]; i++) {
            tmpdb = 0;
            for (int k = 0; k <= nbExpiry - 2; k++) {
                tmpdb += alpha2[nbExpiry - 1][k][i];
            }
            sa2N1[i] = tmpdb;
        }

        vW[nbExpiry - 1] = new double[4 * NB_POINT + 1];
        for (int j = 0; j < n[nbExpiry - 1]; j++) {
            for (int looppt = 0; looppt < nbPoint2; looppt++) {
                vW[nbExpiry - 1][NB_POINT + looppt] += discountedCashFlowN[j]
                        * Math.exp(-sa2N1[j] / 2.0 - h[nbExpiry - 1][j] * bX[looppt])
                        * NORMAL.getCDF(omega * (kappaL[looppt] + alpha[nbExpiry - 1][nbExpiry - 1][j]));
            }
        }
        for (int looppt = 0; looppt < NB_POINT; looppt++) {
            vW[nbExpiry - 1][looppt] = vW[nbExpiry - 1][NB_POINT];
        }
        for (int looppt = 0; looppt < NB_POINT; looppt++) {
            vW[nbExpiry - 1][3 * NB_POINT + 1 + looppt] = vW[nbExpiry - 1][3 * NB_POINT];
        }

        final double c1sqrt2pi = 1.0 / Math.sqrt(2 * Math.PI);
        final double[][] pvcfT = new double[nbExpiry - 1][];
        double[] vL; // Left side of intersection
        double[] vR; // Right side of intersection
        double[][] labc;
        double[][] rabc;
        final double[][] labcM = new double[3][4 * NB_POINT + 1];
        final double[][] rabcM = new double[3][4 * NB_POINT + 1];

        final double[] dabc = new double[3];
        final int[] indSwap = new int[nbExpiry - 1]; // index of the intersection
        double xroot;
        final double[][] xN = new double[nbExpiry - 1][nbPoint2];
        double ci;
        double coi;
        int is;
        final double[] ncdf0 = new double[nbPoint2];
        final double[] ncdf1 = new double[nbPoint2];
        final double[] ncdf2 = new double[nbPoint2];
        final double[] ncdf0X = new double[nbPoint2 + 1];
        final double[] ncdf1X = new double[nbPoint2 + 1];
        final double[] ncdf2X = new double[nbPoint2 + 1];
        double ncdf0x;
        double ncdf1x;
        double ncdf2x;
        double ncdfinit;

        // Main loop for the different expiry dates (except the last one)
        for (int i = nbExpiry - 2; i >= 0; i--) {
            vW[i] = new double[4 * NB_POINT + 1];
            vT[i] = new double[4 * NB_POINT + 1];
            // T: swap
            pvcfT[i] = new double[n[i]];
            for (int j = 0; j < n[i]; j++) {
                pvcfT[i][j] = cashflow[i].getNthPayment(j).getAmount() * dfS[i][j];
                for (int looppt = 0; looppt < 4 * NB_POINT + 1; looppt++) {
                    vT[i][looppt] += pvcfT[i][j] * Math.exp(-sa2[i][j] / 2.0 - h[i][j] * bX2[looppt]);
                }
            }
            // Preparation
            for (int looppt = 0; looppt < nbPoint2; looppt++) {
                xN[i][looppt] = bX[looppt] / beta[i];
            }
            ci = htheta[i] * beta[i];
            coi = Math.exp(ci * ci / 2);

            // Left/Right
            if (omega < 0) {
                vL = vW[i + 1];
                vR = vT[i];
            } else {
                vR = vW[i + 1];
                vL = vT[i];
            }
            indSwap[i] = 0;
            while (vL[indSwap[i] + 1] >= vR[indSwap[i] + 1]) {
                indSwap[i]++;
            }
            // Parabola fit
            labc = parafit(epsilon / beta[i], vL);
            rabc = parafit(epsilon / beta[i], vR);
            for (int k = 0; k < 3; k++) {
                dabc[k] = labc[k][indSwap[i]] - rabc[k][indSwap[i]];
                System.arraycopy(labc[k], 0, labcM[k], 0, indSwap[i] + 1);
                System.arraycopy(labc[k], indSwap[i], labcM[k], indSwap[i] + 1, labc[k].length - indSwap[i]);
                System.arraycopy(rabc[k], 0, rabcM[k], 0, indSwap[i] + 1);
                System.arraycopy(rabc[k], indSwap[i], rabcM[k], indSwap[i] + 1, rabc[k].length - indSwap[i]);
            }

            for (int looppt = 0; looppt < 4 * NB_POINT + 1; looppt++) {
                labcM[1][looppt] = labcM[1][looppt] + labcM[0][looppt] * 2 * ci;
                labcM[2][looppt] = labcM[2][looppt] + labcM[1][looppt] * ci - labcM[0][looppt] * ci * ci;
                rabcM[1][looppt] = rabcM[1][looppt] + rabcM[0][looppt] * 2 * ci;
                rabcM[2][looppt] = rabcM[2][looppt] + rabcM[1][looppt] * ci - rabcM[0][looppt] * ci * ci;
            }
            xroot = (-dabc[1] - Math.sqrt(dabc[1] * dabc[1] - 4 * dabc[0] * dabc[2])) / (2 * dabc[0]);

            ncdfinit = NORMAL.getCDF(xN[i][0]);

            for (int looppt = 0; looppt < nbPoint2; looppt++) {
                ncdf0[looppt] = NORMAL.getCDF(xN[i][looppt] - ci);
                ncdf1[looppt] = -c1sqrt2pi * Math.exp(-(xN[i][looppt] - ci) * (xN[i][looppt] - ci) / 2.0);
                ncdf2[looppt] = ncdf1[looppt] * (xN[i][looppt] - ci) + ncdf0[looppt];
            }

            for (int j = startInt[i]; j <= endInt[i]; j++) {
                is = indSwap[i] - j + 1;
                // % all L
                if (j + 2 * NB_POINT <= indSwap[i]) {
                    final double[][] xabc = new double[3][2 * NB_POINT];
                    for (int k = 0; k < 3; k++) {
                        System.arraycopy(labcM[k], j, xabc[k], 0, 2 * NB_POINT);
                    }
                    for (int looppt = 0; looppt < 2 * NB_POINT; looppt++) {
                        xabc[1][looppt] = xabc[1][looppt] + xabc[0][looppt] * 2 * xN[i][j];
                        xabc[2][looppt] = xabc[2][looppt] + xabc[1][looppt] * xN[i][j]
                                - xabc[0][looppt] * xN[i][j] * xN[i][j];
                    }
                    vW[i][j + NB_POINT] = 0;
                    vW[i][j + NB_POINT] = vW[i][j + NB_POINT] + coi * ni2ncdf(ncdf2, ncdf1, ncdf0, xabc);
                } else if (j < indSwap[i]) {
                    final double[][] xabc = new double[3][2 * NB_POINT + 1];
                    tmpdb = xroot - xN[i][j] - ci;
                    ncdf0x = NORMAL.getCDF(tmpdb);
                    ncdf1x = -Math.exp(-(tmpdb * tmpdb) / 2) * c1sqrt2pi;
                    ncdf2x = ncdf1x * tmpdb + ncdf0x;
                    for (int k = 0; k < 3; k++) {
                        //            System.arraycopy(rabcM[k], j, xabc[k], 0, 2 * _nbPoint + 1); // Swap
                        System.arraycopy(labcM[k], j, xabc[k], 0, 2 * NB_POINT + 1);
                        System.arraycopy(rabcM[k], indSwap[i] + 1, xabc[k], indSwap[i] + 1 - j,
                                j + 2 * NB_POINT - indSwap[i]);
                    }
                    for (int looppt = 0; looppt < 2 * NB_POINT; looppt++) {
                        xabc[1][looppt] = xabc[1][looppt] + xabc[0][looppt] * 2 * xN[i][j];
                        xabc[2][looppt] = xabc[2][looppt] + xabc[1][looppt] * xN[i][j]
                                - xabc[0][looppt] * xN[i][j] * xN[i][j];
                    }
                    System.arraycopy(ncdf0, 0, ncdf0X, 0, is);
                    ncdf0X[is] = ncdf0x;
                    System.arraycopy(ncdf0, is, ncdf0X, is + 1, ncdf0.length - is);
                    System.arraycopy(ncdf1, 0, ncdf1X, 0, is);
                    ncdf1X[is] = ncdf1x;
                    System.arraycopy(ncdf1, is, ncdf1X, is + 1, ncdf1.length - is);
                    System.arraycopy(ncdf2, 0, ncdf2X, 0, is);
                    ncdf2X[is] = ncdf2x;
                    System.arraycopy(ncdf2, is, ncdf2X, is + 1, ncdf2.length - is);
                    vW[i][j + NB_POINT] = vL[j] * vZ[i][0] * ncdfinit;
                    vW[i][j + NB_POINT] += coi * ni2ncdf(ncdf2X, ncdf1X, ncdf0X, xabc);
                    vW[i][j + NB_POINT] += vR[j + 2 * NB_POINT] * vZ[i][vZ[i].length - 1] * ncdfinit;
                } else {
                    final double[][] xabc = new double[3][2 * NB_POINT];
                    for (int k = 0; k < 3; k++) {
                        System.arraycopy(rabcM[k], j + 1, xabc[k], 0, 2 * NB_POINT);
                        //            System.arraycopy(labcM[k], j + 1, xabc[k], 0, 2 * _nbPoint); // Swaption
                    }
                    for (int looppt = 0; looppt < 2 * NB_POINT; looppt++) {
                        xabc[1][looppt] = xabc[1][looppt] + xabc[0][looppt] * 2 * xN[i][j];
                        xabc[2][looppt] = xabc[2][looppt] + xabc[1][looppt] * xN[i][j]
                                - xabc[0][looppt] * xN[i][j] * xN[i][j];
                    }
                    vW[i][j + NB_POINT] = vR[j] * vZ[i][0] * ncdfinit;
                    vW[i][j + NB_POINT] += coi * ni2ncdf(ncdf2, ncdf1, ncdf0, xabc);
                    vW[i][j + NB_POINT] += vR[j + 2 * NB_POINT] * vZ[i][vZ[i].length - 1] * ncdfinit;
                }
            }
            for (int j = 0; j < NB_POINT; j++) { // Flat extrapolation
                vW[i][j] = vW[i][NB_POINT];
                vW[i][3 * NB_POINT + 1 + j] = vW[i][3 * NB_POINT];
            }
        } // End main loop

        return MultipleCurrencyAmount.of(swaption.getUnderlyingSwap()[0].getFixedLeg().getCurrency(),
                vW[0][2 * NB_POINT] * (swaption.isLong() ? 1.0 : -1.0));
    }

    /**
     * Fit the parabolas.
     * @param dx Distance between the x values.
     * @param y The y values.
     * @return The parabolas coefficients.
     */
    private static double[][] parafit(final double dx, final double[] y) {
        final int nbPts = y.length;
        final int nbStep = (nbPts - 1) / 2;
        final double dx2 = dx * dx;
        final double[] x1 = new double[nbStep];
        final double[] x = new double[nbStep];
        for (int i = 0; i < nbStep; i++) {
            x1[i] = -nbStep + 2.0 * i;
            x[i] = x1[i] * dx;
        }
        final double[][] abc = new double[3][2 * nbStep];
        double tmp;
        for (int i = 0; i < nbStep; i++) {
            tmp = (y[2 + 2 * i] - 2 * y[1 + 2 * i] + y[2 * i]) / (2 * dx2);
            abc[0][2 * i] = tmp;
            abc[0][2 * i + 1] = tmp;
            tmp = (y[1 + 2 * i] - y[2 * i]) / dx - (2 * x[i] + dx) * abc[0][2 * i];
            abc[1][2 * i] = tmp;
            abc[1][2 * i + 1] = tmp;
            tmp = y[2 * i] - x[i] * x[i] * abc[0][2 * i] - x[i] * abc[1][2 * i];
            abc[2][2 * i] = tmp;
            abc[2][2 * i + 1] = tmp;
        }
        return abc;
    }

    /**
     * Numerical integration of the parabolas against the normal distribution.
     * @param n2 Second order integrals.
     * @param n1 First order integrals.
     * @param n0 Order 0 integrals.
     * @param abc The parabolas coefficients.
     * @return The integral.
     */
    private static double ni2ncdf(final double[] n2, final double[] n1, final double[] n0, final double[][] abc) {
        double s = 0;
        for (int i = 0; i < abc[0].length; i++) {
            s += abc[0][i] * (n2[i + 1] - n2[i]);
            s += abc[1][i] * (n1[i + 1] - n1[i]);
            s += abc[2][i] * (n0[i + 1] - n0[i]);
        }
        return s;
    }
}