com.opengamma.analytics.financial.curve.sensitivity.ParameterUnderlyingSensitivityCalculator.java Source code

Java tutorial

Introduction

Here is the source code for com.opengamma.analytics.financial.curve.sensitivity.ParameterUnderlyingSensitivityCalculator.java

Source

/**
 * Copyright (C) 2012 - present by OpenGamma Inc. and the OpenGamma group of companies
 * 
 * Please see distribution for license.
 */
package com.opengamma.analytics.financial.curve.sensitivity;

import java.util.ArrayList;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Set;

import org.apache.commons.lang.ArrayUtils;

import com.opengamma.analytics.financial.interestrate.InstrumentDerivativeVisitor;
import com.opengamma.analytics.financial.interestrate.InterestRateCurveSensitivity;
import com.opengamma.analytics.financial.interestrate.YieldCurveBundle;
import com.opengamma.analytics.financial.model.interestrate.curve.YieldAndDiscountCurve;
import com.opengamma.analytics.math.matrix.DoubleMatrix1D;

/**
 * For an instrument, computes the sensitivity of a value (often the present value or a par spread) to the parameters used in the curve.
 * The meaning of "parameters" will depend of the way the curve is stored (interpolated yield, function parameters, etc.).
 * In case a curve is the spread to another curve included in the bundle, the sensitivity is with respect to the underlying curve parameters.
 * The "underlying" curves taken into account are only to one level deep.
 * The return format is a vector (DoubleMatrix1D) with length equal to the total number of parameters in all the curves, 
 * and ordered as the parameters to the different curves themselves in increasing order. 
 */
public class ParameterUnderlyingSensitivityCalculator extends AbstractParameterSensitivityCalculator {

    /**
     * Constructor
     * @param curveSensitivityCalculator The curve sensitivity calculator.
     */
    public ParameterUnderlyingSensitivityCalculator(
            InstrumentDerivativeVisitor<YieldCurveBundle, InterestRateCurveSensitivity> curveSensitivityCalculator) {
        super(curveSensitivityCalculator);
    }

    /**
     * Computes the sensitivity with respect to the parameters from the point sensitivities to the continuously compounded rate.
     * The sensitivity computed is only to the curves not in the fixedCurves set. When a curve depend on another underlying curve and the underlying curve is a fixed curve, 
     * its sensitivity is not reported.
     * @param sensitivity The point sensitivity.
     * @param fixedCurves The fixed curves names (for which the parameter sensitivity are not computed even if they are necessary for the instrument pricing).
     * The curve in the list may or may not be in the bundle. Not null.
     * @param bundle The curve bundle with all the curves with respect to which the sensitivity should be computed. Not null.
     * @return The sensitivity (as a DoubleMatrix1D).
     */
    @Override
    public DoubleMatrix1D pointToParameterSensitivity(final InterestRateCurveSensitivity sensitivity,
            final Set<String> fixedCurves, final YieldCurveBundle bundle) {
        Set<String> curveNamesSet = bundle.getAllNames();
        int nbCurve = curveNamesSet.size();
        String[] curveNamesArray = new String[nbCurve];
        int loopname = 0;
        LinkedHashMap<String, Integer> curveNum = new LinkedHashMap<String, Integer>();
        for (final String name : curveNamesSet) { // loop over all curves (by name)
            curveNamesArray[loopname] = name;
            curveNum.put(name, loopname++);
        }
        int[] nbNewParameters = new int[nbCurve];
        // Implementation note: nbNewParameters - number of new parameters in the curve, parameters not from an underlying curve which is another curve of the bundle.
        int[][] indexOther = new int[nbCurve][];
        // Implementation note: indexOther - the index of the underlying curves, if any.
        loopname = 0;
        for (final String name : curveNamesSet) { // loop over all curves (by name)
            final YieldAndDiscountCurve curve = bundle.getCurve(name);
            List<String> underlyingCurveNames = curve.getUnderlyingCurvesNames();
            nbNewParameters[loopname] = curve.getNumberOfParameters();
            List<Integer> indexOtherList = new ArrayList<Integer>();
            for (String u : underlyingCurveNames) {
                Integer i = curveNum.get(u);
                if (i != null) {
                    indexOtherList.add(i);
                    nbNewParameters[loopname] -= nbNewParameters[i];
                }
            }
            indexOther[loopname] = ArrayUtils.toPrimitive(indexOtherList.toArray(new Integer[0]));
            loopname++;
        }
        int nbSensiCurve = 0;
        for (final String name : bundle.getAllNames()) { // loop over all curves (by name)
            if (!fixedCurves.contains(name)) {
                nbSensiCurve++;
            }
        }
        int[] nbNewParamSensiCurve = new int[nbSensiCurve];
        // Implementation note: nbNewParamSensiCurve
        int[][] indexOtherSensiCurve = new int[nbSensiCurve][];
        // Implementation note: indexOtherSensiCurve - 
        int[] startCleanParameter = new int[nbSensiCurve];
        // Implementation note: startCleanParameter - for each curve for which the sensitivity should be computed, the index in the total sensitivity vector at which that curve start.
        int[][] startDirtyParameter = new int[nbSensiCurve][];
        // Implementation note: startDirtyParameter - for each curve for which the sensitivity should be computed, the indexes of the underlying curves.
        int nbSensitivityCurve = 0;
        int nbCleanParameters = 0;
        int currentDirtyStart = 0;
        for (final String name : curveNamesSet) { // loop over all curves (by name)
            if (!fixedCurves.contains(name)) {
                int num = curveNum.get(name);
                final YieldAndDiscountCurve curve = bundle.getCurve(name);
                List<Integer> startDirtyParameterList = new ArrayList<Integer>();
                List<String> underlyingCurveNames = curve.getUnderlyingCurvesNames();
                for (String u : underlyingCurveNames) {
                    Integer i = curveNum.get(u);
                    if (i != null) {
                        startDirtyParameterList.add(currentDirtyStart);
                        currentDirtyStart += nbNewParameters[i];
                    }
                }
                startDirtyParameterList.add(currentDirtyStart);
                currentDirtyStart += nbNewParameters[nbSensitivityCurve];
                startDirtyParameter[nbSensitivityCurve] = ArrayUtils
                        .toPrimitive(startDirtyParameterList.toArray(new Integer[0]));
                nbNewParamSensiCurve[nbSensitivityCurve] = nbNewParameters[num];
                indexOtherSensiCurve[nbSensitivityCurve] = indexOther[num];
                startCleanParameter[nbSensitivityCurve] = nbCleanParameters;
                nbCleanParameters += nbNewParamSensiCurve[nbSensitivityCurve];
                nbSensitivityCurve++;
            }
        }
        final List<Double> sensiDirtyList = new ArrayList<Double>();
        for (final String name : curveNamesSet) { // loop over all curves (by name)
            if (!fixedCurves.contains(name)) {
                final YieldAndDiscountCurve curve = bundle.getCurve(name);
                List<Double> oneCurveSensitivity = pointToParameterSensitivity(
                        sensitivity.getSensitivities().get(name), curve);
                sensiDirtyList.addAll(oneCurveSensitivity);
            }
        }
        double[] sensiDirty = ArrayUtils.toPrimitive(sensiDirtyList.toArray(new Double[0]));
        double[] sensiClean = new double[nbCleanParameters];
        for (int loopcurve = 0; loopcurve < nbSensiCurve; loopcurve++) {
            for (int loopo = 0; loopo < indexOtherSensiCurve[loopcurve].length; loopo++) {
                if (!fixedCurves.contains(curveNamesArray[indexOtherSensiCurve[loopcurve][loopo]])) {
                    for (int loops = 0; loops < nbNewParamSensiCurve[indexOtherSensiCurve[loopcurve][loopo]]; loops++) {
                        sensiClean[startCleanParameter[indexOtherSensiCurve[loopcurve][loopo]]
                                + loops] += sensiDirty[startDirtyParameter[loopcurve][loopo] + loops];
                    }
                }
            }
            for (int loops = 0; loops < nbNewParamSensiCurve[loopcurve]; loops++) {
                sensiClean[startCleanParameter[loopcurve]
                        + loops] += sensiDirty[startDirtyParameter[loopcurve][indexOtherSensiCurve[loopcurve].length]
                                + loops];
            }
        }
        return new DoubleMatrix1D(sensiClean);
    }

}