Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.netease.news.classifier.naivebayes; import java.io.IOException; import java.util.Map; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import org.apache.mahout.classifier.naivebayes.BayesUtils; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; public class ThetaMapper extends Mapper<IntWritable, VectorWritable, Text, VectorWritable> { public static final String ALPHA_I = ThetaMapper.class.getName() + ".alphaI"; static final String TRAIN_COMPLEMENTARY = ThetaMapper.class.getName() + ".trainComplementary"; private AbstractThetaTrainer trainer; @Override protected void setup(Context ctx) throws IOException, InterruptedException { super.setup(ctx); Configuration conf = ctx.getConfiguration(); float alphaI = conf.getFloat(ALPHA_I, 1.0f); Map<String, Vector> scores = BayesUtils.readScoresFromCache(conf); if (conf.getBoolean(TRAIN_COMPLEMENTARY, false)) { trainer = new ComplementaryThetaTrainer(scores.get(TrainNaiveBayesJob.WEIGHTS_PER_FEATURE), scores.get(TrainNaiveBayesJob.WEIGHTS_PER_LABEL), alphaI); } else { trainer = new StandardThetaTrainer(scores.get(TrainNaiveBayesJob.WEIGHTS_PER_FEATURE), scores.get(TrainNaiveBayesJob.WEIGHTS_PER_LABEL), alphaI); } } @Override protected void map(IntWritable key, VectorWritable value, Context ctx) throws IOException, InterruptedException { trainer.train(key.get(), value.get()); } @Override protected void cleanup(Context ctx) throws IOException, InterruptedException { ctx.write(new Text(TrainNaiveBayesJob.LABEL_THETA_NORMALIZER), new VectorWritable(trainer.retrievePerLabelThetaNormalizer())); super.cleanup(ctx); } }