Java tutorial
package com.netease.news.classifier.naivebayes; /** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import org.apache.mahout.classifier.AbstractVectorClassifier; import org.apache.mahout.math.Vector; import org.apache.mahout.math.Vector.Element; /** * Class implementing the Naive Bayes Classifier Algorithm. Note that this class * supports {@link #classifyFull}, but not {@code classify} or * {@code classifyScalar}. The reason that these two methods are not * supported is because the scores computed by a NaiveBayesClassifier do not * represent probabilities. */ public abstract class AbstractNaiveBayesClassifier extends AbstractVectorClassifier { private final NaiveBayesModel model; protected AbstractNaiveBayesClassifier(NaiveBayesModel model) { this.model = model; } protected NaiveBayesModel getModel() { return model; } protected abstract double getScoreForLabelFeature(int label, int feature); protected double getScoreForLabelInstance(int label, Vector instance) { double result = 0.0; for (Element e : instance.nonZeroes()) { result += e.get() * getScoreForLabelFeature(label, e.index()); } return result; } @Override public int numCategories() { return model.numLabels(); } @Override public Vector classifyFull(Vector instance) { return classifyFull(model.createScoringVector(), instance); } @Override public Vector classifyFull(Vector r, Vector instance) { for (int label = 0; label < model.numLabels(); label++) { r.setQuick(label, getScoreForLabelInstance(label, instance)); } return r; } /** Unsupported method. This implementation simply throws an {@link UnsupportedOperationException}. */ @Override public double classifyScalar(Vector instance) { throw new UnsupportedOperationException("Not supported in Naive Bayes"); } /** Unsupported method. This implementation simply throws an {@link UnsupportedOperationException}. */ @Override public Vector classify(Vector instance) { throw new UnsupportedOperationException("probabilites not supported in Naive Bayes"); } }