Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.mapr.stats; import org.apache.mahout.math.DenseVector; import org.apache.mahout.math.Vector; import org.apache.mahout.math.function.Functions; import org.apache.mahout.math.jet.random.AbstractContinousDistribution; import org.junit.Test; import java.util.Arrays; import java.util.Random; import static org.junit.Assert.assertEquals; public class GammaNormalDistributionTest { @Test public void testEstimation() { final Random gen = new Random(1); GammaNormalDistribution gnd = new GammaNormalDistribution(0, 1, 1, gen); for (int i = 0; i < 10000; i++) { gnd.add(gen.nextGaussian() * 2 + 1); } assertEquals(1.0, gnd.nextMean(), 0.05); assertEquals(2.0, gnd.nextSD(), 0.1); double[] x = new double[10000]; double[] y = new double[10000]; double[] z = new double[10000]; AbstractContinousDistribution dist = gnd.posteriorDistribution(); for (int i = 0; i < 10000; i++) { x[i] = gnd.nextDouble(); y[i] = dist.nextDouble(); z[i] = gen.nextGaussian() * 2 + 1; } Arrays.sort(x); Arrays.sort(y); Arrays.sort(z); final Vector xv = new DenseVector(x).viewPart(1000, 8000); final Vector yv = new DenseVector(y).viewPart(1000, 8000); final Vector zv = new DenseVector(z).viewPart(1000, 8000); final double diffX = xv.minus(zv).assign(Functions.ABS).maxValue(); final double diffY = yv.minus(zv).assign(Functions.ABS).maxValue(); assertEquals(0, diffX, 0.13); assertEquals(0, diffY, 0.13); } }