com.linkedin.drelephant.tuning.PSOParamGeneratorTest.java Source code

Java tutorial

Introduction

Here is the source code for com.linkedin.drelephant.tuning.PSOParamGeneratorTest.java

Source

/*
 * Copyright 2016 LinkedIn Corp.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */

package com.linkedin.drelephant.tuning;

import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.node.JsonNodeType;
import com.linkedin.drelephant.DrElephant;
import com.linkedin.drelephant.ElephantContext;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import models.JobDefinition;
import models.JobExecution;
import models.JobSuggestedParamValue;
import models.TuningAlgorithm;
import models.TuningJobDefinition;
import models.TuningJobExecution;
import models.TuningParameter;
import org.junit.Before;
import org.junit.Test;
import org.slf4j.LoggerFactory;
import play.Application;
import play.GlobalSettings;
import play.libs.Json;
import play.test.FakeApplication;
import org.apache.hadoop.conf.Configuration;

import static common.DBTestUtil.*;
import static common.TestConstants.*;
import static org.junit.Assert.*;
import static play.test.Helpers.*;

public class PSOParamGeneratorTest {

    private static final org.slf4j.Logger LOGGER = LoggerFactory.getLogger(PSOParamGeneratorTest.class);
    private static FakeApplication fakeApp;
    private int numParametersToTune;

    @Before
    public void setup() {
        Map<String, String> dbConn = new HashMap<String, String>();
        dbConn.put(DB_DEFAULT_DRIVER_KEY, DB_DEFAULT_DRIVER_VALUE);
        dbConn.put(DB_DEFAULT_URL_KEY, DB_DEFAULT_URL_VALUE);
        dbConn.put(EVOLUTION_PLUGIN_KEY, EVOLUTION_PLUGIN_VALUE);
        dbConn.put(APPLY_EVOLUTIONS_DEFAULT_KEY, APPLY_EVOLUTIONS_DEFAULT_VALUE);

        GlobalSettings gs = new GlobalSettings() {
            @Override
            public void onStart(Application app) {
                LOGGER.info("Starting FakeApplication");
            }
        };

        fakeApp = fakeApplication(dbConn, gs);
        Configuration configuration = ElephantContext.instance().getAutoTuningConf();
        Boolean autoTuningEnabled = configuration.getBoolean(DrElephant.AUTO_TUNING_ENABLED, false);
        org.junit.Assume.assumeTrue(autoTuningEnabled);
    }

    private void populateTestData() {
        try {
            initDB();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    @Test
    public void generateParamSetTest() {
        running(testServer(TEST_SERVER_PORT, fakeApp), new Runnable() {
            public void run() {

                populateTestData();
                JobDefinition jobDefinition = JobDefinition.find.byId(100003);
                TuningJobDefinition tuningJobDefinition = TuningJobDefinition.find.where()
                        .eq("job.id", jobDefinition.id).findUnique();
                TuningAlgorithm tuningAlgorithm = tuningJobDefinition.tuningAlgorithm;

                List<TuningParameter> tuningParameterList = TuningParameter.find.where()
                        .eq(TuningParameter.TABLE.tuningAlgorithm + "." + TuningAlgorithm.TABLE.id,
                                tuningAlgorithm.id)
                        .eq(TuningParameter.TABLE.isDerived, 0).findList();

                numParametersToTune = tuningParameterList.size();

                LOGGER.info("PSOParamGeneratorTest parameter list: " + Json.toJson(tuningParameterList));

                JobTuningInfo jobTuningInfo = new JobTuningInfo();
                jobTuningInfo.setTuningJob(jobDefinition);
                jobTuningInfo.setParametersToTune(tuningParameterList);
                jobTuningInfo.setTunerState("{}");
                jobTuningInfo.setJobType(TuningAlgorithm.JobType.PIG);

                PSOParamGenerator psoParamGenerator = new PSOParamGenerator();

                JobTuningInfo updatedJobTuningInfo = psoParamGenerator.generateParamSet(jobTuningInfo);
                assertTrue("Updated JobTuningInfo: Job definition mismatch",
                        updatedJobTuningInfo.getTuningJob().equals(jobDefinition));
                assertTrue("Updated JobTuningInfo: Parameter list mismatch",
                        updatedJobTuningInfo.getParametersToTune().equals(tuningParameterList));

                String tunerState = updatedJobTuningInfo.getTunerState();
                JsonNode jsonTunerState = Json.parse(tunerState);

                assertTrue("Updated JobTuningInfo: Current population not found",
                        jsonTunerState.has(JSON_CURRENT_POPULATION_KEY));
                assertTrue("Updated JobTuningInfo: Previous population not found",
                        jsonTunerState.has(JSON_PREVIOUS_POPULATION_KEY));
                assertTrue("Updated JobTuningInfo: Archive not found", jsonTunerState.has(JSON_ARCHIVE_KEY));
                assertTrue("Updated JobTuningInfo: Random number state not found",
                        jsonTunerState.has(JSON_RND_STATE_KEY));

                JsonNode currentPopulation = jsonTunerState.get(JSON_CURRENT_POPULATION_KEY);
                assertEquals("Current population not of type array", JsonNodeType.ARRAY,
                        currentPopulation.getNodeType());
                assertEquals("Current population size not equal to swarm size", SWARM_SIZE,
                        currentPopulation.size());

                JsonNode previousPopulation = jsonTunerState.get(JSON_PREVIOUS_POPULATION_KEY);
                assertEquals("Previous population not of type array", JsonNodeType.ARRAY,
                        previousPopulation.getNodeType());
                assertEquals("Previous population size not equal to swarm size", 0, previousPopulation.size());

                JsonNode archive = jsonTunerState.get(JSON_ARCHIVE_KEY);
                assertEquals("Archive population not of type array", JsonNodeType.ARRAY, archive.getNodeType());
                assertEquals("Archive population size not equal to swarm size", SWARM_SIZE, archive.size());

                JsonNode particle = currentPopulation.get(0);
                assertTrue("Particle doesn't contain candidate", particle.has(JSON_PARTICLE_CANDIDATE_KEY));
                assertTrue("Particle doesn't contain birthday", particle.has(JSON_PARTICLE_BIRTHDATE_KEY));
                assertTrue("Particle doesn't contain maximize", particle.has(JSON_PARTICLE_MAXIMIZE_KEY));
                assertTrue("Particle doesn't contain fitness", particle.has(JSON_PARTICLE_FITNESS_KEY));

                JsonNode candidate = particle.get(JSON_PARTICLE_CANDIDATE_KEY);
                assertEquals("Candidate not of type array", JsonNodeType.ARRAY, candidate.getNodeType());
                assertEquals("Candidate size not equal to tuning parameters size", numParametersToTune,
                        candidate.size());

                JsonNode randomNumberState = jsonTunerState.get(JSON_RND_STATE_KEY);
                assertEquals("Random number state not of type string", JsonNodeType.STRING,
                        randomNumberState.getNodeType());

                jobTuningInfo.setTunerState(updatedJobTuningInfo.getTunerState());
                updatedJobTuningInfo = psoParamGenerator.generateParamSet(jobTuningInfo);
                assertTrue("Updated JobTuningInfo: Job definition mismatch",
                        updatedJobTuningInfo.getTuningJob().equals(jobDefinition));
                assertTrue("Updated JobTuningInfo: Parameter list mismatch",
                        updatedJobTuningInfo.getParametersToTune().equals(tuningParameterList));

                tunerState = updatedJobTuningInfo.getTunerState();
                jsonTunerState = Json.parse(tunerState);

                assertTrue("Updated JobTuningInfo: Current population not found",
                        jsonTunerState.has(JSON_CURRENT_POPULATION_KEY));
                assertTrue("Updated JobTuningInfo: Previous population not found",
                        jsonTunerState.has(JSON_PREVIOUS_POPULATION_KEY));
                assertTrue("Updated JobTuningInfo: Archive not found", jsonTunerState.has(JSON_ARCHIVE_KEY));
                assertTrue("Updated JobTuningInfo: Random number state not found",
                        jsonTunerState.has(JSON_RND_STATE_KEY));

                currentPopulation = jsonTunerState.get(JSON_CURRENT_POPULATION_KEY);
                assertEquals("Current population not of type array", JsonNodeType.ARRAY,
                        currentPopulation.getNodeType());
                assertEquals("Current population size not equal to swarm size", SWARM_SIZE,
                        currentPopulation.size());

                previousPopulation = jsonTunerState.get(JSON_PREVIOUS_POPULATION_KEY);
                assertEquals("Previous population not of type array", JsonNodeType.ARRAY,
                        previousPopulation.getNodeType());
                assertEquals("Previous population size not equal to swarm size", SWARM_SIZE,
                        previousPopulation.size());

                archive = jsonTunerState.get(JSON_ARCHIVE_KEY);
                assertEquals("Archive population not of type array", JsonNodeType.ARRAY, archive.getNodeType());
                assertEquals("Archive population size not equal to swarm size", SWARM_SIZE, archive.size());

                particle = currentPopulation.get(0);
                assertTrue("Particle doesn't contain candidate", particle.has(JSON_PARTICLE_CANDIDATE_KEY));
                assertTrue("Particle doesn't contain birthday", particle.has(JSON_PARTICLE_BIRTHDATE_KEY));
                assertTrue("Particle doesn't contain maximize", particle.has(JSON_PARTICLE_MAXIMIZE_KEY));
                assertTrue("Particle doesn't contain fitness", particle.has(JSON_PARTICLE_FITNESS_KEY));

                candidate = particle.get(JSON_PARTICLE_CANDIDATE_KEY);
                assertEquals("Candidate not of type array", JsonNodeType.ARRAY, candidate.getNodeType());
                assertEquals("Candidate size not equal to tuning parameters size", numParametersToTune,
                        candidate.size());

                randomNumberState = jsonTunerState.get(JSON_RND_STATE_KEY);
                assertEquals("Random number state not of type string", JsonNodeType.STRING,
                        randomNumberState.getNodeType());
            }
        });
    }

    @Test
    public void getParamsTest() {
        running(testServer(TEST_SERVER_PORT, fakeApp), new Runnable() {
            public void run() {
                populateTestData();
                PSOParamGenerator psoParamGenerator = new PSOParamGenerator();
                psoParamGenerator.getParams();

                List<TuningJobExecution> tuningJobExecutionList = TuningJobExecution.find.where()
                        .eq(TuningJobExecution.TABLE.paramSetState, TuningJobExecution.ParamSetStatus.CREATED)
                        .findList();
                assertEquals("Swarm size did not match", SWARM_SIZE, tuningJobExecutionList.size());

                TuningJobExecution tuningJobExecution = tuningJobExecutionList.get(0);

                List<JobSuggestedParamValue> jobSuggestedParamValueList = JobSuggestedParamValue.find.where()
                        .eq(JobSuggestedParamValue.TABLE.jobExecution + '.' + JobExecution.TABLE.id,
                                tuningJobExecution.jobExecution.id)
                        .findList();

                TuningAlgorithm tuningAlgorithm = tuningJobExecution.tuningAlgorithm;
                List<TuningParameter> tuningParameterList = TuningParameter.find.where()
                        .eq(TuningParameter.TABLE.tuningAlgorithm + "." + TuningAlgorithm.TABLE.id,
                                tuningAlgorithm.id)
                        .findList();
                numParametersToTune = tuningParameterList.size();

                assertEquals("Number of parameters didn't match", numParametersToTune,
                        jobSuggestedParamValueList.size());
            }
        });
    }
}