Java tutorial
/* * Copyright 2012 J. Patrick Meyer * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.itemanalysis.psychometrics.scaling; import com.itemanalysis.psychometrics.polycor.CovarianceMatrix; import com.itemanalysis.psychometrics.reliability.CoefficientAlpha; import org.apache.commons.io.FileUtils; import org.apache.commons.math3.stat.descriptive.moment.Mean; import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; import static org.junit.Assert.assertEquals; /** * * @author J. Patrick Meyer <meyerjp at itemanalysis.com> */ public class KelleyRegressedScoreTest { public KelleyRegressedScoreTest() { } /** * Test of rho method, of class KelleyRegressedScore. */ //@Test public void testValue() { System.out.println("Kelley score test"); double[][] x = getData(); double[] sum = new double[1000]; Mean mean = new Mean(); CovarianceMatrix S = new CovarianceMatrix(50); for (int i = 0; i < x.length; i++) { sum[i] = 0.0; for (int j = 0; j < 50; j++) { for (int k = 0; k < 50; k++) { S.increment(j, k, x[i][j], x[i][k]); } sum[i] += x[i][j]; } } CoefficientAlpha alpha = new CoefficientAlpha(S, false); KelleyRegressedScore kscore = new KelleyRegressedScore(mean.evaluate(sum), alpha); double[] kscores = this.getKelleyScores(); double kelley = 0.0; for (int i = 0; i < kscores.length; i++) { kelley = kscore.value(sum[i]); assertEquals(kscores[i], kelley, 1e-5); } } public double[][] getData() { double[][] x = new double[1000][50]; try { File f = FileUtils.toFile(this.getClass().getResource("/testdata/scaling.txt")); BufferedReader br = new BufferedReader(new FileReader(f)); String line = ""; String[] s = null; int row = 0; br.readLine();//eliminate column names by skipping first row while ((line = br.readLine()) != null) { s = line.split(","); for (int j = 0; j < 50; j++) { x[row][j] = Double.parseDouble(s[j]); } row++; } br.close(); } catch (IOException ex) { ex.printStackTrace(); } return x; } public double[] getKelleyScores() { double[] x = new double[1000]; try { File f = FileUtils.toFile(this.getClass().getResource("/testdata/scaling.txt")); BufferedReader br = new BufferedReader(new FileReader(f)); String line = ""; String[] s = null; int row = 0; br.readLine();//eliminate column names by skipping first row while ((line = br.readLine()) != null) { s = line.split(","); x[row] = Double.parseDouble(s[52]);//kelley scores in column 53 row++; } br.close(); } catch (IOException ex) { ex.printStackTrace(); } return x; } }