com.itemanalysis.psychometrics.cfa.CfaSummary.java Source code

Java tutorial

Introduction

Here is the source code for com.itemanalysis.psychometrics.cfa.CfaSummary.java

Source

/*
 * Copyright 2012 J. Patrick Meyer
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.itemanalysis.psychometrics.cfa;

import com.itemanalysis.psychometrics.data.VariableAttributes;
import com.itemanalysis.psychometrics.polycor.CovarianceMatrix;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.log4j.Logger;

import java.util.ArrayList;
import java.util.Formatter;

/**
 *
 * @author J. Patrick Meyer <meyerjp at itemanalysis.com>
 */
@Deprecated
public class CfaSummary {

    private Array2DRowRealMatrix cfaMatrix = null;

    private double numberOfExaminees = 0.0;

    private ArrayList<VariableAttributes> items = null;

    static Logger logger = Logger.getLogger("jmetrik-logger");

    public CfaSummary(ArrayList<VariableAttributes> items, CovarianceMatrix matrix, double numberOfExaminees) {
        this.items = items;
        cfaMatrix = new Array2DRowRealMatrix(matrix.value(true));
        //        cfaMatrix = new Array2DRowRealMatrix(matrix.correlation(true));
        this.numberOfExaminees = numberOfExaminees;
    }

    public String multipleCfa(int estimationMethod, int optimizationMethod) {
        StringBuilder sb = new StringBuilder();
        Formatter f = new Formatter(sb);

        ConfirmatoryFactorAnalysis congeneric = new ConfirmatoryFactorAnalysis(cfaMatrix, numberOfExaminees,
                ConfirmatoryFactorAnalysisModel.CONGENERIC, estimationMethod);
        congeneric.optimize(optimizationMethod);
        logger.info("Congeneric Model CFA completed\n" + congeneric.printOptimizationSummary());

        ConfirmatoryFactorAnalysis tauEquivalent = new ConfirmatoryFactorAnalysis(cfaMatrix, numberOfExaminees,
                ConfirmatoryFactorAnalysisModel.TAU_EQUIVALENT, estimationMethod);
        tauEquivalent.optimize(optimizationMethod);
        logger.info("Tau-equivalent Model CFA completed\n" + tauEquivalent.printOptimizationSummary());

        ConfirmatoryFactorAnalysis parallel = new ConfirmatoryFactorAnalysis(cfaMatrix, numberOfExaminees,
                ConfirmatoryFactorAnalysisModel.PARALLEL, estimationMethod);
        parallel.optimize(optimizationMethod);
        logger.info("Parallel Model CFA completed\n" + parallel.printOptimizationSummary());

        f.format("%-60s", "            CONGENERIC, TAU-EQUIVALENT, AND PARALLEL");
        f.format("%n");
        f.format("%-60s", "                  CONFIRMATORY FACTOR ANLAYSIS");
        f.format("%n");
        f.format("%n");
        f.format("%n");
        f.format("%-60s", "   ****CAUTION CONFIRMATORY FACTOR ANALYSIS IS STILL IN DEVELOPMENT****");
        f.format("%n");
        f.format("%-60s", "            ****IT HAS NOT BEEN THOROUGHLY TESTED****");
        f.format("%n");
        f.format("%n");
        f.format("%-25s", "                         MODEL SUMMARY");
        f.format("%n");
        f.format("%-60s", "=================================================================");
        f.format("%n");
        f.format("%11s", "Statistic");
        f.format("%5s", "");
        f.format("%10s", "Congeneric");
        f.format("%5s", "");
        f.format("%14s", "Tau-Equivalent");
        f.format("%5s", "");
        f.format("%10s", "Parallel");
        f.format("%n");
        f.format("%-60s", "-----------------------------------------------------------------");
        f.format("%n");
        f.format("%11s", "Fmin");
        f.format("%5s", "");
        f.format("% 10.4f", congeneric.getEstimator().fMin());
        f.format("%5s", "");
        f.format("% 10.4f", tauEquivalent.getEstimator().fMin());
        f.format("%9s", "");
        f.format("% 10.4f", parallel.getEstimator().fMin());
        f.format("%n");
        f.format("%11s", "Chi^2");
        f.format("%5s", "");
        f.format("% 10.4f", congeneric.getEstimator().chisquare());
        f.format("%5s", "");
        f.format("% 10.4f", tauEquivalent.getEstimator().chisquare());
        f.format("%9s", "");
        f.format("% 10.4f", parallel.getEstimator().chisquare());
        f.format("%n");
        f.format("%11s", "df");
        f.format("%5s", "");
        f.format("% 10.4f", congeneric.getEstimator().degreesOfFreedom());
        f.format("%5s", "");
        f.format("% 10.4f", tauEquivalent.getEstimator().degreesOfFreedom());
        f.format("%9s", "");
        f.format("% 10.4f", parallel.getEstimator().degreesOfFreedom());
        f.format("%n");
        f.format("%11s", "p-rho");
        f.format("%5s", "");
        f.format("% 10.4f", congeneric.getEstimator().pvalue());
        f.format("%5s", "");
        f.format("% 10.4f", tauEquivalent.getEstimator().pvalue());
        f.format("%9s", "");
        f.format("% 10.4f", parallel.getEstimator().pvalue());
        f.format("%n");
        f.format("%11s", "GFI");
        f.format("%5s", "");
        f.format("% 10.4f", congeneric.getEstimator().gfi());
        f.format("%5s", "");
        f.format("% 10.4f", tauEquivalent.getEstimator().gfi());
        f.format("%9s", "");
        f.format("% 10.4f", parallel.getEstimator().gfi());
        f.format("%n");
        f.format("%11s", "AGFI");
        f.format("%5s", "");
        f.format("% 10.4f", congeneric.getEstimator().agfi());
        f.format("%5s", "");
        f.format("% 10.4f", tauEquivalent.getEstimator().agfi());
        f.format("%9s", "");
        f.format("% 10.4f", parallel.getEstimator().agfi());
        f.format("%n");
        f.format("%11s", "RMR");
        f.format("%5s", "");
        f.format("% 10.4f", Math.sqrt(congeneric.getEstimator().meanSquaredResidual()));
        f.format("%5s", "");
        f.format("% 10.4f", Math.sqrt(tauEquivalent.getEstimator().meanSquaredResidual()));
        f.format("%9s", "");
        f.format("% 10.4f", Math.sqrt(parallel.getEstimator().meanSquaredResidual()));
        f.format("%n");
        f.format("%11s", "RMSEA");
        f.format("%5s", "");
        f.format("% 10.4f", congeneric.getEstimator().rmsea());
        f.format("%5s", "");
        f.format("% 10.4f", tauEquivalent.getEstimator().rmsea());
        f.format("%9s", "");
        f.format("% 10.4f", parallel.getEstimator().rmsea());
        f.format("%n");
        f.format("%11s", "Reliability");
        f.format("%5s", "");
        f.format("% 10.4f", congeneric.getEstimator().mcdonaldOmega());
        f.format("%5s", "");
        f.format("% 10.4f", tauEquivalent.getEstimator().mcdonaldOmega());
        f.format("%9s", "");
        f.format("% 10.4f", parallel.getEstimator().mcdonaldOmega());
        f.format("%n");
        f.format("%-60s", "-----------------------------------------------------------------");
        f.format("%n");
        f.format("%n");
        f.format("%n");
        f.format("%n");
        sb.append(congeneric.getEstimator().printEstimates(items));
        f.format("%n");
        f.format("%n");
        f.format("%n");
        sb.append(tauEquivalent.getEstimator().printEstimates(items));
        f.format("%n");
        f.format("%n");
        f.format("%n");
        sb.append(parallel.getEstimator().printEstimates(items));
        f.format("%n");
        f.format("%n");

        return f.toString();
    }

}