Java tutorial
/* * Copyright (C) 2016 Stefan Hen * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.insightml.math.statistics; import java.util.HashMap; import java.util.Map; import java.util.Map.Entry; import org.apache.commons.math3.stat.correlation.Covariance; import org.apache.commons.math3.stat.correlation.PearsonsCorrelation; import org.apache.commons.math3.stat.correlation.SpearmansCorrelation; import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics; import com.insightml.utils.types.collections.DoubleLinkedList; import com.insightml.utils.types.collections.PairList; import com.insightml.utils.ui.SimpleFormatter; import com.insightml.utils.ui.UiUtils; public class Correlation implements Comparable<Correlation> { private final double[][] arrays; private final Double covariance; private final double pearson; private final double spearman; private final double mean; public Correlation(final double[] x, final double[] y) { arrays = new double[2][x.length]; for (int i = 0; i < x.length; ++i) { arrays[0][i] = x[i]; arrays[1][i] = y[i]; } final DoubleLinkedList x2 = new DoubleLinkedList(); final DoubleLinkedList y2 = new DoubleLinkedList(); for (int i = 0; i < x.length; ++i) { if (!Double.isNaN(x[i])) { x2.add(x[i]); y2.add(y[i]); } } final double[] x2arr = x2.toArray(); final double[] y2arr = y2.toArray(); covariance = new Covariance().covariance(x2arr, y2arr); pearson = new PearsonsCorrelation().correlation(x2arr, y2arr); spearman = new SpearmansCorrelation().correlation(x2arr, y2arr); mean = (Math.abs(pearson) + Math.abs(spearman)) / 2; } public final double getMean() { return mean; } public final double getPearson() { return pearson; } public final double getSpearman() { return spearman; } public final double getCovariance() { return covariance; } @Override public final int compareTo(final Correlation o) { return Double.valueOf(o.getMean()).compareTo(getMean()); } public final String getText() { final StringBuilder builder = new StringBuilder(512); final SimpleFormatter formatter = new SimpleFormatter(5, true); builder.append("Covariance: " + UiUtils.fill(formatter.format(getCovariance()), 12)); builder.append("Pearson: " + UiUtils.fill(formatter.format(getPearson()), 12)); builder.append("Spearman: " + UiUtils.fill(formatter.format(getSpearman()), 12)); builder.append("Mean: " + UiUtils.fill(formatter.format(getMean()), 12)); builder.append("Diff: " + formatter.format(Math.abs(getPearson() - getSpearman()))); return builder.toString(); } public final PairList<String, Map<Number, Number>> getChart(final CharSequence label) { final Map<Number, DescriptiveStatistics> points = new HashMap<>(); for (int i = 0; i < arrays[0].length; ++i) { final double key = arrays[1][i]; if (!points.containsKey(key)) { points.put(key, new DescriptiveStatistics()); } points.get(key).addValue(arrays[0][i]); } final Map<Number, Number> average = new HashMap<>(); final Map<Number, Number> median = new HashMap<>(); for (final Entry<Number, DescriptiveStatistics> entry : points.entrySet()) { average.put(entry.getKey(), entry.getValue().getMean()); median.put(entry.getKey(), entry.getValue().getPercentile(50)); } final PairList<String, Map<Number, Number>> list = new PairList<>(); list.add("Average " + label, average); list.add("Median " + label, median); return list; } }