com.google.devtools.build.lib.skyframe.FilesetEntryFunction.java Source code

Java tutorial

Introduction

Here is the source code for com.google.devtools.build.lib.skyframe.FilesetEntryFunction.java

Source

// Copyright 2015 The Bazel Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.devtools.build.lib.skyframe;

import com.google.common.base.Function;
import com.google.common.base.Predicate;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Iterables;
import com.google.common.collect.Sets;
import com.google.devtools.build.lib.actions.FilesetOutputSymlink;
import com.google.devtools.build.lib.actions.FilesetTraversalParams;
import com.google.devtools.build.lib.actions.FilesetTraversalParams.DirectTraversal;
import com.google.devtools.build.lib.skyframe.RecursiveFilesystemTraversalFunction.DanglingSymlinkException;
import com.google.devtools.build.lib.skyframe.RecursiveFilesystemTraversalFunction.RecursiveFilesystemTraversalException;
import com.google.devtools.build.lib.skyframe.RecursiveFilesystemTraversalValue.ResolvedFile;
import com.google.devtools.build.lib.util.Preconditions;
import com.google.devtools.build.lib.vfs.PathFragment;
import com.google.devtools.build.skyframe.SkyFunction;
import com.google.devtools.build.skyframe.SkyFunctionException;
import com.google.devtools.build.skyframe.SkyKey;
import com.google.devtools.build.skyframe.SkyValue;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import java.util.TreeMap;

/** SkyFunction for {@link FilesetEntryValue}. */
public final class FilesetEntryFunction implements SkyFunction {

    private static final class MissingDepException extends Exception {
    }

    private static final class FilesetEntryFunctionException extends SkyFunctionException {
        FilesetEntryFunctionException(RecursiveFilesystemTraversalException e) {
            super(e, Transience.PERSISTENT);
        }
    }

    @Override
    public SkyValue compute(SkyKey key, Environment env)
            throws FilesetEntryFunctionException, InterruptedException {
        FilesetTraversalParams t = (FilesetTraversalParams) key.argument();
        Preconditions.checkState(t.getNestedTraversal().isPresent() != t.getDirectTraversal().isPresent(),
                "Exactly one of the nested and direct traversals must be specified: %s", t);

        // Create the set of excluded files. Only top-level files can be excluded, i.e. ones that are
        // directly under the root if the root is a directory.
        Set<String> exclusions = createExclusionSet(t.getExcludedFiles());

        // The map of output symlinks. Each key is the path of a output symlink that the Fileset must
        // create, relative to the Fileset.out directory, and each value specifies extra information
        // about the link (its target, associated metadata and again its name).
        Map<PathFragment, FilesetOutputSymlink> outputSymlinks = new LinkedHashMap<>();

        if (t.getNestedTraversal().isPresent()) {
            // The "nested" traversal parameters are present if and only if FilesetEntry.srcdir specifies
            // another Fileset (a "nested" one).
            FilesetEntryValue nested = (FilesetEntryValue) env
                    .getValue(FilesetEntryValue.key(t.getNestedTraversal().get()));
            if (env.valuesMissing()) {
                return null;
            }

            for (FilesetOutputSymlink s : nested.getSymlinks()) {
                if (!exclusions.contains(s.name.getPathString())) {
                    maybeStoreSymlink(s, t.getDestPath(), outputSymlinks);
                }
            }
        } else {
            // The "nested" traversal params are absent if and only if the "direct" traversal params are
            // present, which is the case when the FilesetEntry specifies a package's BUILD file, a
            // directory or a list of files.

            // The root of the direct traversal is defined as follows.
            //
            // If FilesetEntry.files is specified, then a TraversalRequest is created for each entry, the
            // root being the respective entry itself. These are all traversed for they may be
            // directories or symlinks to directories, and we need to establish Skyframe dependencies on
            // their contents for incremental correctness. If an entry is indeed a directory (but not when
            // it's a symlink to one) then we have to create symlinks to each of their childen.
            // (NB: there seems to be no good reason for this, it's just how legacy Fileset works. We may
            // want to consider creating a symlink just for the directory and not for its child elements.)
            //
            // If FilesetEntry.files is not specified, then srcdir refers to either a BUILD file or a
            // directory. For the former, the root will be the parent of the BUILD file. For the latter,
            // the root will be srcdir itself.
            DirectTraversal direct = t.getDirectTraversal().get();

            RecursiveFilesystemTraversalValue rftv;
            try {
                // Traverse the filesystem to establish skyframe dependencies.
                rftv = traverse(env, createErrorInfo(t), direct);
            } catch (MissingDepException e) {
                return null;
            }

            // The root can only be absent for the EMPTY rftv instance.
            if (!rftv.getResolvedRoot().isPresent()) {
                return FilesetEntryValue.EMPTY;
            }

            ResolvedFile resolvedRoot = rftv.getResolvedRoot().get();

            // Handle dangling symlinks gracefully be returning empty results.
            if (!resolvedRoot.getType().exists()) {
                return FilesetEntryValue.EMPTY;
            }

            // The prefix to remove is the entire path of the root. This is OK:
            // - when the root is a file, this removes the entire path, but the traversal's destination
            //   path is actually the name of the output symlink, so this works out correctly
            // - when the root is a directory or a symlink to one then we need to strip off the
            //   directory's path from every result (this is how the output symlinks must be created)
            //   before making them relative to the destination path
            PathFragment prefixToRemove = direct.getRoot().getRelativePart();

            Iterable<ResolvedFile> results = null;

            if (direct.isRecursive()
                    || (resolvedRoot.getType().isDirectory() && !resolvedRoot.getType().isSymlink())) {
                // The traversal is recursive (requested for an entire FilesetEntry.srcdir) or it was
                // requested for a FilesetEntry.files entry which turned out to be a directory. We need to
                // create an output symlink for every file in it and all of its subdirectories. Only
                // exception is when the subdirectory is really a symlink to a directory -- no output
                // shall be created for the contents of those.
                // Now we create Dir objects to model the filesystem tree. The object employs a trick to
                // find directory symlinks: directory symlinks have corresponding ResolvedFile entries and
                // are added as files too, while their children, also added as files, contain the path of
                // the parent. Finding and discarding the children is easy if we traverse the tree from
                // root to leaf.
                DirectoryTree root = new DirectoryTree();
                for (ResolvedFile f : rftv.getTransitiveFiles().toCollection()) {
                    PathFragment path = f.getNameInSymlinkTree().relativeTo(prefixToRemove);
                    if (path.segmentCount() > 0) {
                        path = t.getDestPath().getRelative(path);
                        DirectoryTree dir = root;
                        for (int i = 0; i < path.segmentCount() - 1; ++i) {
                            dir = dir.addOrGetSubdir(path.getSegment(i));
                        }
                        dir.maybeAddFile(f);
                    }
                }
                // Here's where the magic happens. The returned iterable will yield all files in the
                // directory that are not under symlinked directories, as well as all directory symlinks.
                results = root.iterateFiles();
            } else {
                // If we're on this branch then the traversal was done for just one entry in
                // FilesetEntry.files (which was not a directory, so it was either a file, a symlink to one
                // or a symlink to a directory), meaning we'll have only one output symlink.
                results = ImmutableList.of(resolvedRoot);
            }

            // Create one output symlink for each entry in the results.
            for (ResolvedFile f : results) {
                // The linkName has to be under the traversal's root, which is also the prefix to remove.
                PathFragment linkName = f.getNameInSymlinkTree().relativeTo(prefixToRemove);

                // Check whether the symlink is excluded before attempting to resolve it.
                // It may be dangling, but excluding it is still fine.
                if (exclusions.contains(linkName.getPathString())) {
                    continue;
                }

                PathFragment targetName;
                try {
                    targetName = f.getTargetInSymlinkTree(direct.isFollowingSymlinks());
                } catch (DanglingSymlinkException e) {
                    throw new FilesetEntryFunctionException(e);
                }

                // Metadata field must be present. It can only be absent when stripped by tests.
                String metadata = Integer.toHexString(f.getMetadataHash());
                maybeStoreSymlink(linkName, targetName, metadata, t.getDestPath(), outputSymlinks);
            }
        }

        return FilesetEntryValue.of(ImmutableSet.copyOf(outputSymlinks.values()));
    }

    /** Stores an output symlink unless it would overwrite an existing one. */
    private static void maybeStoreSymlink(FilesetOutputSymlink nestedLink, PathFragment destPath,
            Map<PathFragment, FilesetOutputSymlink> result) {
        maybeStoreSymlink(nestedLink.name, nestedLink.target, nestedLink.metadata, destPath, result);
    }

    /** Stores an output symlink unless it would overwrite an existing one. */
    private static void maybeStoreSymlink(PathFragment linkName, PathFragment linkTarget, String metadata,
            PathFragment destPath, Map<PathFragment, FilesetOutputSymlink> result) {
        linkName = destPath.getRelative(linkName);
        if (!result.containsKey(linkName)) {
            result.put(linkName, new FilesetOutputSymlink(linkName, linkTarget, metadata));
        }
    }

    private static Set<String> createExclusionSet(Set<String> input) {
        return Sets.filter(input, new Predicate<String>() {
            @Override
            public boolean apply(String e) {
                // Keep the top-level exclusions only. Do not look for "/" but count the path segments
                // instead, in anticipation of future Windows support.
                return new PathFragment(e).segmentCount() == 1;
            }
        });
    }

    @Override
    public String extractTag(SkyKey skyKey) {
        return null;
    }

    private static RecursiveFilesystemTraversalValue traverse(Environment env, String errorInfo,
            DirectTraversal traversal) throws MissingDepException, InterruptedException {
        SkyKey depKey = RecursiveFilesystemTraversalValue
                .key(new RecursiveFilesystemTraversalValue.TraversalRequest(traversal.getRoot().asRootedPath(),
                        traversal.isGenerated(), traversal.getPackageBoundaryMode(), traversal.isPackage(),
                        errorInfo, /*pattern=*/null));
        RecursiveFilesystemTraversalValue v = (RecursiveFilesystemTraversalValue) env.getValue(depKey);
        if (env.valuesMissing()) {
            throw new MissingDepException();
        }
        return v;
    }

    private static String createErrorInfo(FilesetTraversalParams t) {
        if (t.getDirectTraversal().isPresent()) {
            DirectTraversal direct = t.getDirectTraversal().get();
            return String.format("Fileset '%s' traversing %s '%s'", t.getOwnerLabelForErrorMessages(),
                    direct.isPackage() ? "package" : "file (or directory)",
                    direct.getRoot().getRelativePart().getPathString());
        } else {
            return String.format("Fileset '%s' traversing another Fileset", t.getOwnerLabelForErrorMessages());
        }
    }

    /**
     * Models a FilesetEntryFunction's portion of the symlink output tree created by a Fileset rule.
     *
     * <p>A Fileset rule's output is computed by zero or more {@link FilesetEntryFunction}s, resulting
     * in one {@link FilesetEntryValue} for each. Each of those represents a portion of the grand
     * output tree of the Fileset. These portions are later merged and written to the fileset manifest
     * file, which is then consumed by a tool that ultimately creates the symlinks in the filesystem.
     *
     * <p>Because the Fileset doesn't process the lists in the FilesetEntryValues any further than
     * merging them, they have to adhere to the conventions of the manifest file. One of these is that
     * files are alphabetically ordered (enables the consumer of the manifest to work faster than
     * otherwise) and another is that the contents of regular directories are listed, but contents
     * of directory symlinks are not, only the symlinks are. (Other details of the manifest file are
     * not relevant here.)
     *
     * <p>See {@link DirectoryTree#iterateFiles()} for more details.
     */
    private static final class DirectoryTree {
        // Use TreeMaps for the benefit of alphabetically ordered iteration.
        public final Map<String, ResolvedFile> files = new TreeMap<>();
        public final Map<String, DirectoryTree> dirs = new TreeMap<>();

        DirectoryTree addOrGetSubdir(String name) {
            DirectoryTree result = dirs.get(name);
            if (result == null) {
                result = new DirectoryTree();
                dirs.put(name, result);
            }
            return result;
        }

        void maybeAddFile(ResolvedFile r) {
            String name = r.getNameInSymlinkTree().getBaseName();
            if (!files.containsKey(name)) {
                files.put(name, r);
            }
        }

        /**
         * Lazily yields all files in this directory and all of its subdirectories.
         *
         * <p>The function first yields all the files directly under this directory, in alphabetical
         * order. Then come the contents of subdirectories, processed recursively in the same fashion
         * as this directory, and also in alphabetical order.
         *
         * <p>If a directory symlink is encountered its contents are not listed, only the symlink is.
         */
        Iterable<ResolvedFile> iterateFiles() {
            // 1. Filter directory symlinks. If the symlink target contains files, those were added
            // as normal files so their parent directory (the symlink) would show up in the dirs map
            // (as a directory) as well as in the files map (as a symlink to a directory).
            final Set<String> fileNames = files.keySet();
            Iterable<Map.Entry<String, DirectoryTree>> noDirSymlinkes = Iterables.filter(dirs.entrySet(),
                    new Predicate<Map.Entry<String, DirectoryTree>>() {
                        @Override
                        public boolean apply(Map.Entry<String, DirectoryTree> input) {
                            return !fileNames.contains(input.getKey());
                        }
                    });

            // 2. Extract the iterables of the true subdirectories.
            Iterable<Iterable<ResolvedFile>> subdirIters = Iterables.transform(noDirSymlinkes,
                    new Function<Map.Entry<String, DirectoryTree>, Iterable<ResolvedFile>>() {
                        @Override
                        public Iterable<ResolvedFile> apply(Entry<String, DirectoryTree> input) {
                            return input.getValue().iterateFiles();
                        }
                    });

            // 3. Just concat all subdirectory iterations for one, seamless iteration.
            Iterable<ResolvedFile> dirsIter = Iterables.concat(subdirIters);

            return Iterables.concat(files.values(), dirsIter);
        }
    }
}