com.google.common.math.IntMath.java Source code

Java tutorial

Introduction

Here is the source code for com.google.common.math.IntMath.java

Source

/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.math;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.math.MathPreconditions.checkNoOverflow;
import static com.google.common.math.MathPreconditions.checkNonNegative;
import static com.google.common.math.MathPreconditions.checkPositive;
import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
import static java.lang.Math.abs;
import static java.lang.Math.min;
import static java.math.RoundingMode.HALF_EVEN;
import static java.math.RoundingMode.HALF_UP;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;

import java.math.BigInteger;
import java.math.RoundingMode;

/**
 * A class for arithmetic on values of type {@code int}. Where possible, methods are defined and
 * named analogously to their {@code BigInteger} counterparts.
 *
 * <p>The implementations of many methods in this class are based on material from Henry S. Warren,
 * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002).
 *
 * <p>Similar functionality for {@code long} and for {@link BigInteger} can be found in
 * {@link LongMath} and {@link BigIntegerMath} respectively.  For other common operations on
 * {@code int} values, see {@link com.google.common.primitives.Ints}.
 *
 * @author Louis Wasserman
 * @since 11.0
 */
@GwtCompatible(emulated = true)
public final class IntMath {
    // NOTE: Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, ||

    /**
     * Returns {@code true} if {@code x} represents a power of two.
     *
     * <p>This differs from {@code Integer.bitCount(x) == 1}, because
     * {@code Integer.bitCount(Integer.MIN_VALUE) == 1}, but {@link Integer#MIN_VALUE} is not a power
     * of two.
     */
    public static boolean isPowerOfTwo(int x) {
        return x > 0 & (x & (x - 1)) == 0;
    }

    /**
     * Returns 1 if {@code x < y} as unsigned integers, and 0 otherwise. Assumes that x - y fits into
     * a signed int. The implementation is branch-free, and benchmarks suggest it is measurably (if
     * narrowly) faster than the straightforward ternary expression.
     */
    @VisibleForTesting
    static int lessThanBranchFree(int x, int y) {
        // The double negation is optimized away by normal Java, but is necessary for GWT
        // to make sure bit twiddling works as expected.
        return ~~(x - y) >>> (Integer.SIZE - 1);
    }

    /**
     * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode.
     *
     * @throws IllegalArgumentException if {@code x <= 0}
     * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
     *         is not a power of two
     */
    @SuppressWarnings("fallthrough")
    // TODO(kevinb): remove after this warning is disabled globally
    public static int log2(int x, RoundingMode mode) {
        checkPositive("x", x);
        switch (mode) {
        case UNNECESSARY:
            checkRoundingUnnecessary(isPowerOfTwo(x));
            // fall through
        case DOWN:
        case FLOOR:
            return (Integer.SIZE - 1) - Integer.numberOfLeadingZeros(x);

        case UP:
        case CEILING:
            return Integer.SIZE - Integer.numberOfLeadingZeros(x - 1);

        case HALF_DOWN:
        case HALF_UP:
        case HALF_EVEN:
            // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
            int leadingZeros = Integer.numberOfLeadingZeros(x);
            int cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros;
            // floor(2^(logFloor + 0.5))
            int logFloor = (Integer.SIZE - 1) - leadingZeros;
            return logFloor + lessThanBranchFree(cmp, x);

        default:
            throw new AssertionError();
        }
    }

    /** The biggest half power of two that can fit in an unsigned int. */
    @VisibleForTesting
    static final int MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333;

    /**
     * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode.
     *
     * @throws IllegalArgumentException if {@code x <= 0}
     * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
     *         is not a power of ten
     */
    @GwtIncompatible("need BigIntegerMath to adequately test")
    @SuppressWarnings("fallthrough")
    public static int log10(int x, RoundingMode mode) {
        checkPositive("x", x);
        int logFloor = log10Floor(x);
        int floorPow = powersOf10[logFloor];
        switch (mode) {
        case UNNECESSARY:
            checkRoundingUnnecessary(x == floorPow);
            // fall through
        case FLOOR:
        case DOWN:
            return logFloor;
        case CEILING:
        case UP:
            return logFloor + lessThanBranchFree(floorPow, x);
        case HALF_DOWN:
        case HALF_UP:
        case HALF_EVEN:
            // sqrt(10) is irrational, so log10(x) - logFloor is never exactly 0.5
            return logFloor + lessThanBranchFree(halfPowersOf10[logFloor], x);
        default:
            throw new AssertionError();
        }
    }

    private static int log10Floor(int x) {
        /*
         * Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation.
         *
         * The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))),
         * we can narrow the possible floor(log10(x)) values to two.  For example, if floor(log2(x))
         * is 6, then 64 <= x < 128, so floor(log10(x)) is either 1 or 2.
         */
        int y = maxLog10ForLeadingZeros[Integer.numberOfLeadingZeros(x)];
        /*
         * y is the higher of the two possible values of floor(log10(x)). If x < 10^y, then we want the
         * lower of the two possible values, or y - 1, otherwise, we want y.
         */
        return y - lessThanBranchFree(x, powersOf10[y]);
    }

    // maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i)))
    @VisibleForTesting
    static final byte[] maxLog10ForLeadingZeros = { 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3,
            3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0 };

    @VisibleForTesting
    static final int[] powersOf10 = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };

    // halfPowersOf10[i] = largest int less than 10^(i + 0.5)
    @VisibleForTesting
    static final int[] halfPowersOf10 = { 3, 31, 316, 3162, 31622, 316227, 3162277, 31622776, 316227766,
            Integer.MAX_VALUE };

    /**
     * Returns {@code b} to the {@code k}th power. Even if the result overflows, it will be equal to
     * {@code BigInteger.valueOf(b).pow(k).intValue()}. This implementation runs in {@code O(log k)}
     * time.
     *
     * <p>Compare {@link #checkedPow}, which throws an {@link ArithmeticException} upon overflow.
     *
     * @throws IllegalArgumentException if {@code k < 0}
     */
    @GwtIncompatible("failing tests")
    public static int pow(int b, int k) {
        checkNonNegative("exponent", k);
        switch (b) {
        case 0:
            return (k == 0) ? 1 : 0;
        case 1:
            return 1;
        case (-1):
            return ((k & 1) == 0) ? 1 : -1;
        case 2:
            return (k < Integer.SIZE) ? (1 << k) : 0;
        case (-2):
            if (k < Integer.SIZE) {
                return ((k & 1) == 0) ? (1 << k) : -(1 << k);
            } else {
                return 0;
            }
        default:
            // continue below to handle the general case
        }
        for (int accum = 1;; k >>= 1) {
            switch (k) {
            case 0:
                return accum;
            case 1:
                return b * accum;
            default:
                accum *= ((k & 1) == 0) ? 1 : b;
                b *= b;
            }
        }
    }

    /**
     * Returns the square root of {@code x}, rounded with the specified rounding mode.
     *
     * @throws IllegalArgumentException if {@code x < 0}
     * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and
     *         {@code sqrt(x)} is not an integer
     */
    @GwtIncompatible("need BigIntegerMath to adequately test")
    @SuppressWarnings("fallthrough")
    public static int sqrt(int x, RoundingMode mode) {
        checkNonNegative("x", x);
        int sqrtFloor = sqrtFloor(x);
        switch (mode) {
        case UNNECESSARY:
            checkRoundingUnnecessary(sqrtFloor * sqrtFloor == x); // fall through
        case FLOOR:
        case DOWN:
            return sqrtFloor;
        case CEILING:
        case UP:
            return sqrtFloor + lessThanBranchFree(sqrtFloor * sqrtFloor, x);
        case HALF_DOWN:
        case HALF_UP:
        case HALF_EVEN:
            int halfSquare = sqrtFloor * sqrtFloor + sqrtFloor;
            /*
             * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both
             * x and halfSquare are integers, this is equivalent to testing whether or not x <=
             * halfSquare. (We have to deal with overflow, though.)
             *
             * If we treat halfSquare as an unsigned int, we know that
             *            sqrtFloor^2 <= x < (sqrtFloor + 1)^2
             * halfSquare - sqrtFloor <= x < halfSquare + sqrtFloor + 1
             * so |x - halfSquare| <= sqrtFloor.  Therefore, it's safe to treat x - halfSquare as a
             * signed int, so lessThanBranchFree is safe for use.
             */
            return sqrtFloor + lessThanBranchFree(halfSquare, x);
        default:
            throw new AssertionError();
        }
    }

    private static int sqrtFloor(int x) {
        // There is no loss of precision in converting an int to a double, according to
        // http://java.sun.com/docs/books/jls/third_edition/html/conversions.html#5.1.2
        return (int) Math.sqrt(x);
    }

    /**
     * Returns the result of dividing {@code p} by {@code q}, rounding using the specified
     * {@code RoundingMode}.
     *
     * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a}
     *         is not an integer multiple of {@code b}
     */
    @SuppressWarnings("fallthrough")
    public static int divide(int p, int q, RoundingMode mode) {
        checkNotNull(mode);
        if (q == 0) {
            throw new ArithmeticException("/ by zero"); // for GWT
        }
        int div = p / q;
        int rem = p - q * div; // equal to p % q

        if (rem == 0) {
            return div;
        }

        /*
         * Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to
         * deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of
         * p / q.
         *
         * signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise.
         */
        int signum = 1 | ((p ^ q) >> (Integer.SIZE - 1));
        boolean increment;
        switch (mode) {
        case UNNECESSARY:
            checkRoundingUnnecessary(rem == 0);
            // fall through
        case DOWN:
            increment = false;
            break;
        case UP:
            increment = true;
            break;
        case CEILING:
            increment = signum > 0;
            break;
        case FLOOR:
            increment = signum < 0;
            break;
        case HALF_EVEN:
        case HALF_DOWN:
        case HALF_UP:
            int absRem = abs(rem);
            int cmpRemToHalfDivisor = absRem - (abs(q) - absRem);
            // subtracting two nonnegative ints can't overflow
            // cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2).
            if (cmpRemToHalfDivisor == 0) { // exactly on the half mark
                increment = (mode == HALF_UP || (mode == HALF_EVEN & (div & 1) != 0));
            } else {
                increment = cmpRemToHalfDivisor > 0; // closer to the UP value
            }
            break;
        default:
            throw new AssertionError();
        }
        return increment ? div + signum : div;
    }

    /**
     * Returns {@code x mod m}, a non-negative value less than {@code m}.
     * This differs from {@code x % m}, which might be negative.
     *
     * <p>For example:<pre> {@code
     *
     * mod(7, 4) == 3
     * mod(-7, 4) == 1
     * mod(-1, 4) == 3
     * mod(-8, 4) == 0
     * mod(8, 4) == 0}</pre>
     *
     * @throws ArithmeticException if {@code m <= 0}
     * @see <a href="http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3">
     *      Remainder Operator</a>
     */
    public static int mod(int x, int m) {
        if (m <= 0) {
            throw new ArithmeticException("Modulus " + m + " must be > 0");
        }
        int result = x % m;
        return (result >= 0) ? result : result + m;
    }

    /**
     * Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if
     * {@code a == 0 && b == 0}.
     *
     * @throws IllegalArgumentException if {@code a < 0} or {@code b < 0}
     */
    public static int gcd(int a, int b) {
        /*
         * The reason we require both arguments to be >= 0 is because otherwise, what do you return on
         * gcd(0, Integer.MIN_VALUE)? BigInteger.gcd would return positive 2^31, but positive 2^31
         * isn't an int.
         */
        checkNonNegative("a", a);
        checkNonNegative("b", b);
        if (a == 0) {
            // 0 % b == 0, so b divides a, but the converse doesn't hold.
            // BigInteger.gcd is consistent with this decision.
            return b;
        } else if (b == 0) {
            return a; // similar logic
        }
        /*
         * Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm.
         * This is >40% faster than the Euclidean algorithm in benchmarks.
         */
        int aTwos = Integer.numberOfTrailingZeros(a);
        a >>= aTwos; // divide out all 2s
        int bTwos = Integer.numberOfTrailingZeros(b);
        b >>= bTwos; // divide out all 2s
        while (a != b) { // both a, b are odd
            // The key to the binary GCD algorithm is as follows:
            // Both a and b are odd.  Assume a > b; then gcd(a - b, b) = gcd(a, b).
            // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.

            // We bend over backwards to avoid branching, adapting a technique from
            // http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax

            int delta = a - b; // can't overflow, since a and b are nonnegative

            int minDeltaOrZero = delta & (delta >> (Integer.SIZE - 1));
            // equivalent to Math.min(delta, 0)

            a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b)
            // a is now nonnegative and even

            b += minDeltaOrZero; // sets b to min(old a, b)
            a >>= Integer.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b
        }
        return a << min(aTwos, bTwos);
    }

    /**
     * Returns the sum of {@code a} and {@code b}, provided it does not overflow.
     *
     * @throws ArithmeticException if {@code a + b} overflows in signed {@code int} arithmetic
     */
    public static int checkedAdd(int a, int b) {
        long result = (long) a + b;
        checkNoOverflow(result == (int) result);
        return (int) result;
    }

    /**
     * Returns the difference of {@code a} and {@code b}, provided it does not overflow.
     *
     * @throws ArithmeticException if {@code a - b} overflows in signed {@code int} arithmetic
     */
    public static int checkedSubtract(int a, int b) {
        long result = (long) a - b;
        checkNoOverflow(result == (int) result);
        return (int) result;
    }

    /**
     * Returns the product of {@code a} and {@code b}, provided it does not overflow.
     *
     * @throws ArithmeticException if {@code a * b} overflows in signed {@code int} arithmetic
     */
    public static int checkedMultiply(int a, int b) {
        long result = (long) a * b;
        checkNoOverflow(result == (int) result);
        return (int) result;
    }

    /**
     * Returns the {@code b} to the {@code k}th power, provided it does not overflow.
     *
     * <p>{@link #pow} may be faster, but does not check for overflow.
     *
     * @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed
     *         {@code int} arithmetic
     */
    public static int checkedPow(int b, int k) {
        checkNonNegative("exponent", k);
        switch (b) {
        case 0:
            return (k == 0) ? 1 : 0;
        case 1:
            return 1;
        case (-1):
            return ((k & 1) == 0) ? 1 : -1;
        case 2:
            checkNoOverflow(k < Integer.SIZE - 1);
            return 1 << k;
        case (-2):
            checkNoOverflow(k < Integer.SIZE);
            return ((k & 1) == 0) ? 1 << k : -1 << k;
        default:
            // continue below to handle the general case
        }
        int accum = 1;
        while (true) {
            switch (k) {
            case 0:
                return accum;
            case 1:
                return checkedMultiply(accum, b);
            default:
                if ((k & 1) != 0) {
                    accum = checkedMultiply(accum, b);
                }
                k >>= 1;
                if (k > 0) {
                    checkNoOverflow(-FLOOR_SQRT_MAX_INT <= b & b <= FLOOR_SQRT_MAX_INT);
                    b *= b;
                }
            }
        }
    }

    @VisibleForTesting
    static final int FLOOR_SQRT_MAX_INT = 46340;

    /**
     * Returns {@code n!}, that is, the product of the first {@code n} positive
     * integers, {@code 1} if {@code n == 0}, or {@link Integer#MAX_VALUE} if the
     * result does not fit in a {@code int}.
     *
     * @throws IllegalArgumentException if {@code n < 0}
     */
    public static int factorial(int n) {
        checkNonNegative("n", n);
        return (n < factorials.length) ? factorials[n] : Integer.MAX_VALUE;
    }

    private static final int[] factorials = { 1, 1, 1 * 2, 1 * 2 * 3, 1 * 2 * 3 * 4, 1 * 2 * 3 * 4 * 5,
            1 * 2 * 3 * 4 * 5 * 6, 1 * 2 * 3 * 4 * 5 * 6 * 7, 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8,
            1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9, 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10,
            1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11, 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 };

    /**
     * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and
     * {@code k}, or {@link Integer#MAX_VALUE} if the result does not fit in an {@code int}.
     *
     * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n}
     */
    @GwtIncompatible("need BigIntegerMath to adequately test")
    public static int binomial(int n, int k) {
        checkNonNegative("n", n);
        checkNonNegative("k", k);
        checkArgument(k <= n, "k (%s) > n (%s)", k, n);
        if (k > (n >> 1)) {
            k = n - k;
        }
        if (k >= biggestBinomials.length || n > biggestBinomials[k]) {
            return Integer.MAX_VALUE;
        }
        switch (k) {
        case 0:
            return 1;
        case 1:
            return n;
        default:
            long result = 1;
            for (int i = 0; i < k; i++) {
                result *= n - i;
                result /= i + 1;
            }
            return (int) result;
        }
    }

    // binomial(biggestBinomials[k], k) fits in an int, but not binomial(biggestBinomials[k]+1,k).
    @VisibleForTesting
    static int[] biggestBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, 65536, 2345, 477, 193, 110, 75, 58, 49,
            43, 39, 37, 35, 34, 34, 33 };

    /**
     * Returns the arithmetic mean of {@code x} and {@code y}, rounded towards
     * negative infinity. This method is overflow resilient.
     *
     * @since 14.0
     */
    public static int mean(int x, int y) {
        // Efficient method for computing the arithmetic mean.
        // The alternative (x + y) / 2 fails for large values.
        // The alternative (x + y) >>> 1 fails for negative values.
        return (x & y) + ((x ^ y) >> 1);
    }

    private IntMath() {
    }
}