com.google.common.math.DoubleMath.java Source code

Java tutorial

Introduction

Here is the source code for com.google.common.math.DoubleMath.java

Source

/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.math;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.math.DoubleUtils.IMPLICIT_BIT;
import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS;
import static com.google.common.math.DoubleUtils.getSignificand;
import static com.google.common.math.DoubleUtils.isFinite;
import static com.google.common.math.DoubleUtils.isNormal;
import static com.google.common.math.DoubleUtils.scaleNormalize;
import static com.google.common.math.MathPreconditions.checkInRange;
import static com.google.common.math.MathPreconditions.checkNonNegative;
import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
import static java.lang.Math.abs;
import static java.lang.Math.copySign;
import static java.lang.Math.getExponent;
import static java.lang.Math.log;
import static java.lang.Math.rint;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.primitives.Booleans;

import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.Iterator;

/**
 * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}.
 *
 * @author Louis Wasserman
 * @since 11.0
 */
@GwtCompatible(emulated = true)
public final class DoubleMath {
    /*
     * This method returns a value y such that rounding y DOWN (towards zero) gives the same result
     * as rounding x according to the specified mode.
     */
    @GwtIncompatible("#isMathematicalInteger, com.google.common.math.DoubleUtils")
    static double roundIntermediate(double x, RoundingMode mode) {
        if (!isFinite(x)) {
            throw new ArithmeticException("input is infinite or NaN");
        }
        switch (mode) {
        case UNNECESSARY:
            checkRoundingUnnecessary(isMathematicalInteger(x));
            return x;

        case FLOOR:
            if (x >= 0.0 || isMathematicalInteger(x)) {
                return x;
            } else {
                return x - 1.0;
            }

        case CEILING:
            if (x <= 0.0 || isMathematicalInteger(x)) {
                return x;
            } else {
                return x + 1.0;
            }

        case DOWN:
            return x;

        case UP:
            if (isMathematicalInteger(x)) {
                return x;
            } else {
                return x + Math.copySign(1.0, x);
            }

        case HALF_EVEN:
            return rint(x);

        case HALF_UP: {
            double z = rint(x);
            if (abs(x - z) == 0.5) {
                return x + copySign(0.5, x);
            } else {
                return z;
            }
        }

        case HALF_DOWN: {
            double z = rint(x);
            if (abs(x - z) == 0.5) {
                return x;
            } else {
                return z;
            }
        }

        default:
            throw new AssertionError();
        }
    }

    /**
     * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding
     * mode, if possible.
     *
     * @throws ArithmeticException if
     *         <ul>
     *         <li>{@code x} is infinite or NaN
     *         <li>{@code x}, after being rounded to a mathematical integer using the specified
     *         rounding mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code
     *         Integer.MAX_VALUE}
     *         <li>{@code x} is not a mathematical integer and {@code mode} is
     *         {@link RoundingMode#UNNECESSARY}
     *         </ul>
     */
    @GwtIncompatible("#roundIntermediate")
    public static int roundToInt(double x, RoundingMode mode) {
        double z = roundIntermediate(x, mode);
        checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0);
        return (int) z;
    }

    private static final double MIN_INT_AS_DOUBLE = -0x1p31;
    private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0;

    /**
     * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding
     * mode, if possible.
     *
     * @throws ArithmeticException if
     *         <ul>
     *         <li>{@code x} is infinite or NaN
     *         <li>{@code x}, after being rounded to a mathematical integer using the specified
     *         rounding mode, is either less than {@code Long.MIN_VALUE} or greater than {@code
     *         Long.MAX_VALUE}
     *         <li>{@code x} is not a mathematical integer and {@code mode} is
     *         {@link RoundingMode#UNNECESSARY}
     *         </ul>
     */
    @GwtIncompatible("#roundIntermediate")
    public static long roundToLong(double x, RoundingMode mode) {
        double z = roundIntermediate(x, mode);
        checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE);
        return (long) z;
    }

    private static final double MIN_LONG_AS_DOUBLE = -0x1p63;
    /*
     * We cannot store Long.MAX_VALUE as a double without losing precision.  Instead, we store
     * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1.
     */
    private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63;

    /**
     * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified
     * rounding mode, if possible.
     *
     * @throws ArithmeticException if
     *         <ul>
     *         <li>{@code x} is infinite or NaN
     *         <li>{@code x} is not a mathematical integer and {@code mode} is
     *         {@link RoundingMode#UNNECESSARY}
     *         </ul>
     */
    @GwtIncompatible("#roundIntermediate, java.lang.Math.getExponent, " + "com.google.common.math.DoubleUtils")
    public static BigInteger roundToBigInteger(double x, RoundingMode mode) {
        x = roundIntermediate(x, mode);
        if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) {
            return BigInteger.valueOf((long) x);
        }
        int exponent = getExponent(x);
        long significand = getSignificand(x);
        BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS);
        return (x < 0) ? result.negate() : result;
    }

    /**
     * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer
     * {@code k}.
     */
    @GwtIncompatible("com.google.common.math.DoubleUtils")
    public static boolean isPowerOfTwo(double x) {
        return x > 0.0 && isFinite(x) && LongMath.isPowerOfTwo(getSignificand(x));
    }

    /**
     * Returns the base 2 logarithm of a double value.
     *
     * <p>Special cases:
     * <ul>
     * <li>If {@code x} is NaN or less than zero, the result is NaN.
     * <li>If {@code x} is positive infinity, the result is positive infinity.
     * <li>If {@code x} is positive or negative zero, the result is negative infinity.
     * </ul>
     *
     * <p>The computed result is within 1 ulp of the exact result.
     *
     * <p>If the result of this method will be immediately rounded to an {@code int},
     * {@link #log2(double, RoundingMode)} is faster.
     */
    public static double log2(double x) {
        return log(x) / LN_2; // surprisingly within 1 ulp according to tests
    }

    private static final double LN_2 = log(2);

    /**
     * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an
     * {@code int}.
     *
     * <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}.
     *
     * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is
     *         infinite
     */
    @GwtIncompatible("java.lang.Math.getExponent, com.google.common.math.DoubleUtils")
    @SuppressWarnings("fallthrough")
    public static int log2(double x, RoundingMode mode) {
        checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite");
        int exponent = getExponent(x);
        if (!isNormal(x)) {
            return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS;
            // Do the calculation on a normal value.
        }
        // x is positive, finite, and normal
        boolean increment;
        switch (mode) {
        case UNNECESSARY:
            checkRoundingUnnecessary(isPowerOfTwo(x));
            // fall through
        case FLOOR:
            increment = false;
            break;
        case CEILING:
            increment = !isPowerOfTwo(x);
            break;
        case DOWN:
            increment = exponent < 0 & !isPowerOfTwo(x);
            break;
        case UP:
            increment = exponent >= 0 & !isPowerOfTwo(x);
            break;
        case HALF_DOWN:
        case HALF_EVEN:
        case HALF_UP:
            double xScaled = scaleNormalize(x);
            // sqrt(2) is irrational, and the spec is relative to the "exact numerical result,"
            // so log2(x) is never exactly exponent + 0.5.
            increment = (xScaled * xScaled) > 2.0;
            break;
        default:
            throw new AssertionError();
        }
        return increment ? exponent + 1 : exponent;
    }

    /**
     * Returns {@code true} if {@code x} represents a mathematical integer.
     *
     * <p>This is equivalent to, but not necessarily implemented as, the expression {@code
     * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}.
     */
    @GwtIncompatible("java.lang.Math.getExponent, com.google.common.math.DoubleUtils")
    public static boolean isMathematicalInteger(double x) {
        return isFinite(x)
                && (x == 0.0 || SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x));
    }

    /**
     * Returns {@code n!}, that is, the product of the first {@code n} positive
     * integers, {@code 1} if {@code n == 0}, or {@code n!}, or
     * {@link Double#POSITIVE_INFINITY} if {@code n! > Double.MAX_VALUE}.
     *
     * <p>The result is within 1 ulp of the true value.
     *
     * @throws IllegalArgumentException if {@code n < 0}
     */
    public static double factorial(int n) {
        checkNonNegative("n", n);
        if (n > MAX_FACTORIAL) {
            return Double.POSITIVE_INFINITY;
        } else {
            // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate
            // result than multiplying by everySixteenthFactorial[n >> 4] directly.
            double accum = 1.0;
            for (int i = 1 + (n & ~0xf); i <= n; i++) {
                accum *= i;
            }
            return accum * everySixteenthFactorial[n >> 4];
        }
    }

    @VisibleForTesting
    static final int MAX_FACTORIAL = 170;

    @VisibleForTesting
    static final double[] everySixteenthFactorial = { 0x1.0p0, 0x1.30777758p44, 0x1.956ad0aae33a4p117,
            0x1.ee69a78d72cb6p202, 0x1.fe478ee34844ap295, 0x1.c619094edabffp394, 0x1.3638dd7bd6347p498,
            0x1.7cac197cfe503p605, 0x1.1e5dfc140e1e5p716, 0x1.8ce85fadb707ep829, 0x1.95d5f3d928edep945 };

    /**
     * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other.
     *
     * <p>Technically speaking, this is equivalent to
     * {@code Math.abs(a - b) <= tolerance || Double.valueOf(a).equals(Double.valueOf(b))}.
     *
     * <p>Notable special cases include:
     * <ul>
     * <li>All NaNs are fuzzily equal.
     * <li>If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal.
     * <li>Positive and negative zero are always fuzzily equal.
     * <li>If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then
     * {@code a} and {@code b} are fuzzily equal if and only if {@code a == b}.
     * <li>With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal.
     * <li>With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code
     * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves.
     * </li>
     *
     * <p>This is reflexive and symmetric, but <em>not</em> transitive, so it is <em>not</em> an
     * equivalence relation and <em>not</em> suitable for use in {@link Object#equals}
     * implementations.
     *
     * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN
     * @since 13.0
     */
    public static boolean fuzzyEquals(double a, double b, double tolerance) {
        MathPreconditions.checkNonNegative("tolerance", tolerance);
        return Math.copySign(a - b, 1.0) <= tolerance
                // copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics
                || (a == b) // needed to ensure that infinities equal themselves
                || (Double.isNaN(a) && Double.isNaN(b));
    }

    /**
     * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values.
     *
     * <p>This method is equivalent to
     * {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, b)}. In particular, like
     * {@link Double#compare(double, double)}, it treats all NaN values as equal and greater than all
     * other values (including {@link Double#POSITIVE_INFINITY}).
     *
     * <p>This is <em>not</em> a total ordering and is <em>not</em> suitable for use in
     * {@link Comparable#compareTo} implementations.  In particular, it is not transitive.
     *
     * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN
     * @since 13.0
     */
    public static int fuzzyCompare(double a, double b, double tolerance) {
        if (fuzzyEquals(a, b, tolerance)) {
            return 0;
        } else if (a < b) {
            return -1;
        } else if (a > b) {
            return 1;
        } else {
            return Booleans.compare(Double.isNaN(a), Double.isNaN(b));
        }
    }

    /**
     * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of
     * {@code values}.
     *
     * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of
     * the arithmetic mean of the population.
     *
     * @param values a nonempty series of values
     * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value
     */
    @GwtIncompatible("com.google.common.math.DoubleUtils")
    public static double mean(double... values) {
        checkArgument(values.length > 0, "Cannot take mean of 0 values");
        long count = 1;
        double mean = checkFinite(values[0]);
        for (int index = 1; index < values.length; ++index) {
            checkFinite(values[index]);
            count++;
            // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15)
            mean += (values[index] - mean) / count;
        }
        return mean;
    }

    /**
     * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of
     * {@code values}.
     *
     * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of
     * the arithmetic mean of the population.
     *
     * @param values a nonempty series of values
     * @throws IllegalArgumentException if {@code values} is empty
     */
    public static double mean(int... values) {
        checkArgument(values.length > 0, "Cannot take mean of 0 values");
        // The upper bound on the the length of an array and the bounds on the int values mean that, in
        // this case only, we can compute the sum as a long without risking overflow or loss of
        // precision. So we do that, as it's slightly quicker than the Knuth algorithm.
        long sum = 0;
        for (int index = 0; index < values.length; ++index) {
            sum += values[index];
        }
        return (double) sum / values.length;
    }

    /**
     * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of
     * {@code values}.
     *
     * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of
     * the arithmetic mean of the population.
     *
     * @param values a nonempty series of values, which will be converted to {@code double} values
     *     (this may cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15))
     * @throws IllegalArgumentException if {@code values} is empty
     */
    public static double mean(long... values) {
        checkArgument(values.length > 0, "Cannot take mean of 0 values");
        long count = 1;
        double mean = values[0];
        for (int index = 1; index < values.length; ++index) {
            count++;
            // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15)
            mean += (values[index] - mean) / count;
        }
        return mean;
    }

    /**
     * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of
     * {@code values}.
     *
     * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of
     * the arithmetic mean of the population.
     *
     * @param values a nonempty series of values, which will be converted to {@code double} values
     *     (this may cause loss of precision)
     * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value
     */
    @GwtIncompatible("com.google.common.math.DoubleUtils")
    public static double mean(Iterable<? extends Number> values) {
        return mean(values.iterator());
    }

    /**
     * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of
     * {@code values}.
     *
     * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of
     * the arithmetic mean of the population.
     *
     * @param values a nonempty series of values, which will be converted to {@code double} values
     *     (this may cause loss of precision)
     * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value
     */
    @GwtIncompatible("com.google.common.math.DoubleUtils")
    public static double mean(Iterator<? extends Number> values) {
        checkArgument(values.hasNext(), "Cannot take mean of 0 values");
        long count = 1;
        double mean = checkFinite(values.next().doubleValue());
        while (values.hasNext()) {
            double value = checkFinite(values.next().doubleValue());
            count++;
            // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15)
            mean += (value - mean) / count;
        }
        return mean;
    }

    @GwtIncompatible("com.google.common.math.DoubleUtils")
    private static double checkFinite(double argument) {
        checkArgument(isFinite(argument));
        return argument;
    }

    private DoubleMath() {
    }
}