com.google.common.math.BigIntegerMath.java Source code

Java tutorial

Introduction

Here is the source code for com.google.common.math.BigIntegerMath.java

Source

/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.math;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.math.MathPreconditions.checkNonNegative;
import static com.google.common.math.MathPreconditions.checkPositive;
import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
import static java.math.RoundingMode.CEILING;
import static java.math.RoundingMode.FLOOR;
import static java.math.RoundingMode.HALF_EVEN;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.ArrayList;
import java.util.List;

/**
 * A class for arithmetic on values of type {@code BigInteger}.
 *
 * <p>The implementations of many methods in this class are based on material from Henry S. Warren,
 * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002).
 *
 * <p>Similar functionality for {@code int} and for {@code long} can be found in
 * {@link IntMath} and {@link LongMath} respectively.
 *
 * @author Louis Wasserman
 * @since 11.0
 */
@GwtCompatible(emulated = true)
public final class BigIntegerMath {
    /**
     * Returns {@code true} if {@code x} represents a power of two.
     */
    public static boolean isPowerOfTwo(BigInteger x) {
        checkNotNull(x);
        return x.signum() > 0 && x.getLowestSetBit() == x.bitLength() - 1;
    }

    /**
     * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode.
     *
     * @throws IllegalArgumentException if {@code x <= 0}
     * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
     *         is not a power of two
     */
    @SuppressWarnings("fallthrough")
    // TODO(kevinb): remove after this warning is disabled globally
    public static int log2(BigInteger x, RoundingMode mode) {
        checkPositive("x", checkNotNull(x));
        int logFloor = x.bitLength() - 1;
        switch (mode) {
        case UNNECESSARY:
            checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through
        case DOWN:
        case FLOOR:
            return logFloor;

        case UP:
        case CEILING:
            return isPowerOfTwo(x) ? logFloor : logFloor + 1;

        case HALF_DOWN:
        case HALF_UP:
        case HALF_EVEN:
            if (logFloor < SQRT2_PRECOMPUTE_THRESHOLD) {
                BigInteger halfPower = SQRT2_PRECOMPUTED_BITS.shiftRight(SQRT2_PRECOMPUTE_THRESHOLD - logFloor);
                if (x.compareTo(halfPower) <= 0) {
                    return logFloor;
                } else {
                    return logFloor + 1;
                }
            }
            /*
             * Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
             *
             * To determine which side of logFloor.5 the logarithm is, we compare x^2 to 2^(2 *
             * logFloor + 1).
             */
            BigInteger x2 = x.pow(2);
            int logX2Floor = x2.bitLength() - 1;
            return (logX2Floor < 2 * logFloor + 1) ? logFloor : logFloor + 1;

        default:
            throw new AssertionError();
        }
    }

    /*
     * The maximum number of bits in a square root for which we'll precompute an explicit half power
     * of two. This can be any value, but higher values incur more class load time and linearly
     * increasing memory consumption.
     */
    @VisibleForTesting
    static final int SQRT2_PRECOMPUTE_THRESHOLD = 256;

    @VisibleForTesting
    static final BigInteger SQRT2_PRECOMPUTED_BITS = new BigInteger(
            "16a09e667f3bcc908b2fb1366ea957d3e3adec17512775099da2f590b0667322a", 16);

    /**
     * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode.
     *
     * @throws IllegalArgumentException if {@code x <= 0}
     * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
     *         is not a power of ten
     */
    @GwtIncompatible("TODO")
    @SuppressWarnings("fallthrough")
    public static int log10(BigInteger x, RoundingMode mode) {
        checkPositive("x", x);
        if (fitsInLong(x)) {
            return LongMath.log10(x.longValue(), mode);
        }

        int approxLog10 = (int) (log2(x, FLOOR) * LN_2 / LN_10);
        BigInteger approxPow = BigInteger.TEN.pow(approxLog10);
        int approxCmp = approxPow.compareTo(x);

        /*
         * We adjust approxLog10 and approxPow until they're equal to floor(log10(x)) and
         * 10^floor(log10(x)).
         */

        if (approxCmp > 0) {
            /*
             * The code is written so that even completely incorrect approximations will still yield the
             * correct answer eventually, but in practice this branch should almost never be entered,
             * and even then the loop should not run more than once.
             */
            do {
                approxLog10--;
                approxPow = approxPow.divide(BigInteger.TEN);
                approxCmp = approxPow.compareTo(x);
            } while (approxCmp > 0);
        } else {
            BigInteger nextPow = BigInteger.TEN.multiply(approxPow);
            int nextCmp = nextPow.compareTo(x);
            while (nextCmp <= 0) {
                approxLog10++;
                approxPow = nextPow;
                approxCmp = nextCmp;
                nextPow = BigInteger.TEN.multiply(approxPow);
                nextCmp = nextPow.compareTo(x);
            }
        }

        int floorLog = approxLog10;
        BigInteger floorPow = approxPow;
        int floorCmp = approxCmp;

        switch (mode) {
        case UNNECESSARY:
            checkRoundingUnnecessary(floorCmp == 0);
            // fall through
        case FLOOR:
        case DOWN:
            return floorLog;

        case CEILING:
        case UP:
            return floorPow.equals(x) ? floorLog : floorLog + 1;

        case HALF_DOWN:
        case HALF_UP:
        case HALF_EVEN:
            // Since sqrt(10) is irrational, log10(x) - floorLog can never be exactly 0.5
            BigInteger x2 = x.pow(2);
            BigInteger halfPowerSquared = floorPow.pow(2).multiply(BigInteger.TEN);
            return (x2.compareTo(halfPowerSquared) <= 0) ? floorLog : floorLog + 1;
        default:
            throw new AssertionError();
        }
    }

    private static final double LN_10 = Math.log(10);
    private static final double LN_2 = Math.log(2);

    /**
     * Returns the square root of {@code x}, rounded with the specified rounding mode.
     *
     * @throws IllegalArgumentException if {@code x < 0}
     * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and
     *         {@code sqrt(x)} is not an integer
     */
    @GwtIncompatible("TODO")
    @SuppressWarnings("fallthrough")
    public static BigInteger sqrt(BigInteger x, RoundingMode mode) {
        checkNonNegative("x", x);
        if (fitsInLong(x)) {
            return BigInteger.valueOf(LongMath.sqrt(x.longValue(), mode));
        }
        BigInteger sqrtFloor = sqrtFloor(x);
        switch (mode) {
        case UNNECESSARY:
            checkRoundingUnnecessary(sqrtFloor.pow(2).equals(x)); // fall through
        case FLOOR:
        case DOWN:
            return sqrtFloor;
        case CEILING:
        case UP:
            int sqrtFloorInt = sqrtFloor.intValue();
            boolean sqrtFloorIsExact = (sqrtFloorInt * sqrtFloorInt == x.intValue()) // fast check mod 2^32
                    && sqrtFloor.pow(2).equals(x); // slow exact check
            return sqrtFloorIsExact ? sqrtFloor : sqrtFloor.add(BigInteger.ONE);
        case HALF_DOWN:
        case HALF_UP:
        case HALF_EVEN:
            BigInteger halfSquare = sqrtFloor.pow(2).add(sqrtFloor);
            /*
             * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both
             * x and halfSquare are integers, this is equivalent to testing whether or not x <=
             * halfSquare.
             */
            return (halfSquare.compareTo(x) >= 0) ? sqrtFloor : sqrtFloor.add(BigInteger.ONE);
        default:
            throw new AssertionError();
        }
    }

    @GwtIncompatible("TODO")
    private static BigInteger sqrtFloor(BigInteger x) {
        /*
         * Adapted from Hacker's Delight, Figure 11-1.
         *
         * Using DoubleUtils.bigToDouble, getting a double approximation of x is extremely fast, and
         * then we can get a double approximation of the square root. Then, we iteratively improve this
         * guess with an application of Newton's method, which sets guess := (guess + (x / guess)) / 2.
         * This iteration has the following two properties:
         *
         * a) every iteration (except potentially the first) has guess >= floor(sqrt(x)). This is
         * because guess' is the arithmetic mean of guess and x / guess, sqrt(x) is the geometric mean,
         * and the arithmetic mean is always higher than the geometric mean.
         *
         * b) this iteration converges to floor(sqrt(x)). In fact, the number of correct digits doubles
         * with each iteration, so this algorithm takes O(log(digits)) iterations.
         *
         * We start out with a double-precision approximation, which may be higher or lower than the
         * true value. Therefore, we perform at least one Newton iteration to get a guess that's
         * definitely >= floor(sqrt(x)), and then continue the iteration until we reach a fixed point.
         */
        BigInteger sqrt0;
        int log2 = log2(x, FLOOR);
        if (log2 < Double.MAX_EXPONENT) {
            sqrt0 = sqrtApproxWithDoubles(x);
        } else {
            int shift = (log2 - DoubleUtils.SIGNIFICAND_BITS) & ~1; // even!
            /*
             * We have that x / 2^shift < 2^54. Our initial approximation to sqrtFloor(x) will be
             * 2^(shift/2) * sqrtApproxWithDoubles(x / 2^shift).
             */
            sqrt0 = sqrtApproxWithDoubles(x.shiftRight(shift)).shiftLeft(shift >> 1);
        }
        BigInteger sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
        if (sqrt0.equals(sqrt1)) {
            return sqrt0;
        }
        do {
            sqrt0 = sqrt1;
            sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
        } while (sqrt1.compareTo(sqrt0) < 0);
        return sqrt0;
    }

    @GwtIncompatible("TODO")
    private static BigInteger sqrtApproxWithDoubles(BigInteger x) {
        return DoubleMath.roundToBigInteger(Math.sqrt(DoubleUtils.bigToDouble(x)), HALF_EVEN);
    }

    /**
     * Returns the result of dividing {@code p} by {@code q}, rounding using the specified
     * {@code RoundingMode}.
     *
     * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a}
     *         is not an integer multiple of {@code b}
     */
    @GwtIncompatible("TODO")
    public static BigInteger divide(BigInteger p, BigInteger q, RoundingMode mode) {
        BigDecimal pDec = new BigDecimal(p);
        BigDecimal qDec = new BigDecimal(q);
        return pDec.divide(qDec, 0, mode).toBigIntegerExact();
    }

    /**
     * Returns {@code n!}, that is, the product of the first {@code n} positive
     * integers, or {@code 1} if {@code n == 0}.
     *
     * <p><b>Warning:</b> the result takes <i>O(n log n)</i> space, so use cautiously.
     *
     * <p>This uses an efficient binary recursive algorithm to compute the factorial
     * with balanced multiplies.  It also removes all the 2s from the intermediate
     * products (shifting them back in at the end).
     *
     * @throws IllegalArgumentException if {@code n < 0}
     */
    public static BigInteger factorial(int n) {
        checkNonNegative("n", n);

        // If the factorial is small enough, just use LongMath to do it.
        if (n < LongMath.factorials.length) {
            return BigInteger.valueOf(LongMath.factorials[n]);
        }

        // Pre-allocate space for our list of intermediate BigIntegers.
        int approxSize = IntMath.divide(n * IntMath.log2(n, CEILING), Long.SIZE, CEILING);
        ArrayList<BigInteger> bignums = new ArrayList<BigInteger>(approxSize);

        // Start from the pre-computed maximum long factorial.
        int startingNumber = LongMath.factorials.length;
        long product = LongMath.factorials[startingNumber - 1];
        // Strip off 2s from this value.
        int shift = Long.numberOfTrailingZeros(product);
        product >>= shift;

        // Use floor(log2(num)) + 1 to prevent overflow of multiplication.
        int productBits = LongMath.log2(product, FLOOR) + 1;
        int bits = LongMath.log2(startingNumber, FLOOR) + 1;
        // Check for the next power of two boundary, to save us a CLZ operation.
        int nextPowerOfTwo = 1 << (bits - 1);

        // Iteratively multiply the longs as big as they can go.
        for (long num = startingNumber; num <= n; num++) {
            // Check to see if the floor(log2(num)) + 1 has changed.
            if ((num & nextPowerOfTwo) != 0) {
                nextPowerOfTwo <<= 1;
                bits++;
            }
            // Get rid of the 2s in num.
            int tz = Long.numberOfTrailingZeros(num);
            long normalizedNum = num >> tz;
            shift += tz;
            // Adjust floor(log2(num)) + 1.
            int normalizedBits = bits - tz;
            // If it won't fit in a long, then we store off the intermediate product.
            if (normalizedBits + productBits >= Long.SIZE) {
                bignums.add(BigInteger.valueOf(product));
                product = 1;
                productBits = 0;
            }
            product *= normalizedNum;
            productBits = LongMath.log2(product, FLOOR) + 1;
        }
        // Check for leftovers.
        if (product > 1) {
            bignums.add(BigInteger.valueOf(product));
        }
        // Efficiently multiply all the intermediate products together.
        return listProduct(bignums).shiftLeft(shift);
    }

    static BigInteger listProduct(List<BigInteger> nums) {
        return listProduct(nums, 0, nums.size());
    }

    static BigInteger listProduct(List<BigInteger> nums, int start, int end) {
        switch (end - start) {
        case 0:
            return BigInteger.ONE;
        case 1:
            return nums.get(start);
        case 2:
            return nums.get(start).multiply(nums.get(start + 1));
        case 3:
            return nums.get(start).multiply(nums.get(start + 1)).multiply(nums.get(start + 2));
        default:
            // Otherwise, split the list in half and recursively do this.
            int m = (end + start) >>> 1;
            return listProduct(nums, start, m).multiply(listProduct(nums, m, end));
        }
    }

    /**
      * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and
      * {@code k}, that is, {@code n! / (k! (n - k)!)}.
      *
      * <p><b>Warning:</b> the result can take as much as <i>O(k log n)</i> space.
      *
      * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n}
      */
    public static BigInteger binomial(int n, int k) {
        checkNonNegative("n", n);
        checkNonNegative("k", k);
        checkArgument(k <= n, "k (%s) > n (%s)", k, n);
        if (k > (n >> 1)) {
            k = n - k;
        }
        if (k < LongMath.biggestBinomials.length && n <= LongMath.biggestBinomials[k]) {
            return BigInteger.valueOf(LongMath.binomial(n, k));
        }

        BigInteger accum = BigInteger.ONE;

        long numeratorAccum = n;
        long denominatorAccum = 1;

        int bits = LongMath.log2(n, RoundingMode.CEILING);

        int numeratorBits = bits;

        for (int i = 1; i < k; i++) {
            int p = n - i;
            int q = i + 1;

            // log2(p) >= bits - 1, because p >= n/2

            if (numeratorBits + bits >= Long.SIZE - 1) {
                // The numerator is as big as it can get without risking overflow.
                // Multiply numeratorAccum / denominatorAccum into accum.
                accum = accum.multiply(BigInteger.valueOf(numeratorAccum))
                        .divide(BigInteger.valueOf(denominatorAccum));
                numeratorAccum = p;
                denominatorAccum = q;
                numeratorBits = bits;
            } else {
                // We can definitely multiply into the long accumulators without overflowing them.
                numeratorAccum *= p;
                denominatorAccum *= q;
                numeratorBits += bits;
            }
        }
        return accum.multiply(BigInteger.valueOf(numeratorAccum)).divide(BigInteger.valueOf(denominatorAccum));
    }

    // Returns true if BigInteger.valueOf(x.longValue()).equals(x).
    @GwtIncompatible("TODO")
    static boolean fitsInLong(BigInteger x) {
        return x.bitLength() <= Long.SIZE - 1;
    }

    private BigIntegerMath() {
    }
}