com.google.common.graph.Traverser.java Source code

Java tutorial

Introduction

Here is the source code for com.google.common.graph.Traverser.java

Source

/*
 * Copyright (C) 2017 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.graph;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.Beta;
import com.google.common.collect.AbstractIterator;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Iterables;
import com.google.common.collect.UnmodifiableIterator;
import java.util.ArrayDeque;
import java.util.Deque;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Queue;
import java.util.Set;
import org.checkerframework.checker.nullness.compatqual.NullableDecl;

/**
 * An object that can traverse the nodes that are reachable from a specified (set of) start node(s)
 * using a specified {@link SuccessorsFunction}.
 *
 * <p>There are two entry points for creating a {@code Traverser}: {@link
 * #forTree(SuccessorsFunction)} and {@link #forGraph(SuccessorsFunction)}. You should choose one
 * based on your answers to the following questions:
 *
 * <ol>
 *   <li>Is there only one path to any node that's reachable from any start node? (If so, the
 *       graph to be traversed is a tree or forest even if it is a subgraph of a graph which is
 *       neither.)
 *   <li>Are the node objects' implementations of {@code equals()}/{@code hashCode()} <a
 *       href="https://github.com/google/guava/wiki/GraphsExplained#non-recursiveness">recursive</a>?
 * </ol>
 *
 * <p>If your answers are:
 *
 * <ul>
 *   <li>(1) "no" and (2) "no", use {@link #forGraph(SuccessorsFunction)}.
 *   <li>(1) "yes" and (2) "yes", use {@link #forTree(SuccessorsFunction)}.
 *   <li>(1) "yes" and (2) "no", you can use either, but {@code forTree()} will be more efficient.
 *   <li>(1) "no" and (2) "yes", <b><i>neither will work</i></b>, but if you transform your node
 *       objects into a non-recursive form, you can use {@code forGraph()}.
 * </ul>
 *
 * @author Jens Nyman
 * @param <N> Node parameter type
 * @since 23.1
 */
@Beta
public abstract class Traverser<N> {

    /**
     * Creates a new traverser for the given general {@code graph}.
     *
     * <p>Traversers created using this method are guaranteed to visit each node reachable from the
     * start node(s) at most once.
     *
     * <p>If you know that no node in {@code graph} is reachable by more than one path from the start
     * node(s), consider using {@link #forTree(SuccessorsFunction)} instead.
     *
     * <p><b>Performance notes</b>
     *
     * <ul>
     *   <li>Traversals require <i>O(n)</i> time (where <i>n</i> is the number of nodes reachable from
     *       the start node), assuming that the node objects have <i>O(1)</i> {@code equals()} and
     *       {@code hashCode()} implementations. (See the <a
     *       href="https://github.com/google/guava/wiki/GraphsExplained#elements-must-be-useable-as-map-keys">
     *       notes on element objects</a> for more information.)
     *   <li>While traversing, the traverser will use <i>O(n)</i> space (where <i>n</i> is the number
     *       of nodes that have thus far been visited), plus <i>O(H)</i> space (where <i>H</i> is the
     *       number of nodes that have been seen but not yet visited, that is, the "horizon").
     * </ul>
     *
     * @param graph {@link SuccessorsFunction} representing a general graph that may have cycles.
     */
    public static <N> Traverser<N> forGraph(SuccessorsFunction<N> graph) {
        checkNotNull(graph);
        return new GraphTraverser<>(graph);
    }

    /**
     * Creates a new traverser for a directed acyclic graph that has at most one path from the start
     * node(s) to any node reachable from the start node(s), and has no paths from any start node to
     * any other start node, such as a tree or forest.
     *
     * <p>{@code forTree()} is especially useful (versus {@code forGraph()}) in cases where the data
     * structure being traversed is, in addition to being a tree/forest, also defined <a
     * href="https://github.com/google/guava/wiki/GraphsExplained#non-recursiveness">recursively</a>.
     * This is because the {@code forTree()}-based implementations don't keep track of visited nodes,
     * and therefore don't need to call `equals()` or `hashCode()` on the node objects; this saves
     * both time and space versus traversing the same graph using {@code forGraph()}.
     *
     * <p>Providing a graph to be traversed for which there is more than one path from the start
     * node(s) to any node may lead to:
     *
     * <ul>
     *   <li>Traversal not terminating (if the graph has cycles)
     *   <li>Nodes being visited multiple times (if multiple paths exist from any start node to any
     *       node reachable from any start node)
     * </ul>
     *
     * <p><b>Performance notes</b>
     *
     * <ul>
     *   <li>Traversals require <i>O(n)</i> time (where <i>n</i> is the number of nodes reachable from
     *       the start node).
     *   <li>While traversing, the traverser will use <i>O(H)</i> space (where <i>H</i> is the number
     *       of nodes that have been seen but not yet visited, that is, the "horizon").
     * </ul>
     *
     * <p><b>Examples</b> (all edges are directed facing downwards)
     *
     * <p>The graph below would be valid input with start nodes of {@code a, f, c}. However, if {@code
     * b} were <i>also</i> a start node, then there would be multiple paths to reach {@code e} and
     * {@code h}.
     *
     * <pre>{@code
     *    a     b      c
     *   / \   / \     |
     *  /   \ /   \    |
     * d     e     f   g
     *       |
     *       |
     *       h
     * }</pre>
     *
     * <p>.
     *
     * <p>The graph below would be a valid input with start nodes of {@code a, f}. However, if {@code
     * b} were a start node, there would be multiple paths to {@code f}.
     *
     * <pre>{@code
     *    a     b
     *   / \   / \
     *  /   \ /   \
     * c     d     e
     *        \   /
     *         \ /
     *          f
     * }</pre>
     *
     * <p><b>Note on binary trees</b>
     *
     * <p>This method can be used to traverse over a binary tree. Given methods {@code
     * leftChild(node)} and {@code rightChild(node)}, this method can be called as
     *
     * <pre>{@code
     * Traverser.forTree(node -> ImmutableList.of(leftChild(node), rightChild(node)));
     * }</pre>
     *
     * @param tree {@link SuccessorsFunction} representing a directed acyclic graph that has at most
     *     one path between any two nodes
     */
    public static <N> Traverser<N> forTree(SuccessorsFunction<N> tree) {
        checkNotNull(tree);
        if (tree instanceof BaseGraph) {
            checkArgument(((BaseGraph<?>) tree).isDirected(), "Undirected graphs can never be trees.");
        }
        if (tree instanceof Network) {
            checkArgument(((Network<?, ?>) tree).isDirected(), "Undirected networks can never be trees.");
        }
        return new TreeTraverser<>(tree);
    }

    /**
     * Returns an unmodifiable {@code Iterable} over the nodes reachable from {@code startNode}, in
     * the order of a breadth-first traversal. That is, all the nodes of depth 0 are returned, then
     * depth 1, then 2, and so on.
     *
     * <p><b>Example:</b> The following graph with {@code startNode} {@code a} would return nodes in
     * the order {@code abcdef} (assuming successors are returned in alphabetical order).
     *
     * <pre>{@code
     * b ---- a ---- d
     * |      |
     * |      |
     * e ---- c ---- f
     * }</pre>
     *
     * <p>The behavior of this method is undefined if the nodes, or the topology of the graph, change
     * while iteration is in progress.
     *
     * <p>The returned {@code Iterable} can be iterated over multiple times. Every iterator will
     * compute its next element on the fly. It is thus possible to limit the traversal to a certain
     * number of nodes as follows:
     *
     * <pre>{@code
     * Iterables.limit(Traverser.forGraph(graph).breadthFirst(node), maxNumberOfNodes);
     * }</pre>
     *
     * <p>See <a href="https://en.wikipedia.org/wiki/Breadth-first_search">Wikipedia</a> for more
     * info.
     *
     * @throws IllegalArgumentException if {@code startNode} is not an element of the graph
     */
    public abstract Iterable<N> breadthFirst(N startNode);

    /**
     * Returns an unmodifiable {@code Iterable} over the nodes reachable from any of the {@code
     * startNodes}, in the order of a breadth-first traversal. This is equivalent to a breadth-first
     * traversal of a graph with an additional root node whose successors are the listed {@code
     * startNodes}.
     *
     * @throws IllegalArgumentException if any of {@code startNodes} is not an element of the graph
     * @see #breadthFirst(Object)
     * @since 24.1
     */
    public abstract Iterable<N> breadthFirst(Iterable<? extends N> startNodes);

    /**
     * Returns an unmodifiable {@code Iterable} over the nodes reachable from {@code startNode}, in
     * the order of a depth-first pre-order traversal. "Pre-order" implies that nodes appear in the
     * {@code Iterable} in the order in which they are first visited.
     *
     * <p><b>Example:</b> The following graph with {@code startNode} {@code a} would return nodes in
     * the order {@code abecfd} (assuming successors are returned in alphabetical order).
     *
     * <pre>{@code
     * b ---- a ---- d
     * |      |
     * |      |
     * e ---- c ---- f
     * }</pre>
     *
     * <p>The behavior of this method is undefined if the nodes, or the topology of the graph, change
     * while iteration is in progress.
     *
     * <p>The returned {@code Iterable} can be iterated over multiple times. Every iterator will
     * compute its next element on the fly. It is thus possible to limit the traversal to a certain
     * number of nodes as follows:
     *
     * <pre>{@code
     * Iterables.limit(
     *     Traverser.forGraph(graph).depthFirstPreOrder(node), maxNumberOfNodes);
     * }</pre>
     *
     * <p>See <a href="https://en.wikipedia.org/wiki/Depth-first_search">Wikipedia</a> for more info.
     *
     * @throws IllegalArgumentException if {@code startNode} is not an element of the graph
     */
    public abstract Iterable<N> depthFirstPreOrder(N startNode);

    /**
     * Returns an unmodifiable {@code Iterable} over the nodes reachable from any of the {@code
     * startNodes}, in the order of a depth-first pre-order traversal. This is equivalent to a
     * depth-first pre-order traversal of a graph with an additional root node whose successors are
     * the listed {@code startNodes}.
     *
     * @throws IllegalArgumentException if any of {@code startNodes} is not an element of the graph
     * @see #depthFirstPreOrder(Object)
     * @since 24.1
     */
    public abstract Iterable<N> depthFirstPreOrder(Iterable<? extends N> startNodes);

    /**
     * Returns an unmodifiable {@code Iterable} over the nodes reachable from {@code startNode}, in
     * the order of a depth-first post-order traversal. "Post-order" implies that nodes appear in the
     * {@code Iterable} in the order in which they are visited for the last time.
     *
     * <p><b>Example:</b> The following graph with {@code startNode} {@code a} would return nodes in
     * the order {@code fcebda} (assuming successors are returned in alphabetical order).
     *
     * <pre>{@code
     * b ---- a ---- d
     * |      |
     * |      |
     * e ---- c ---- f
     * }</pre>
     *
     * <p>The behavior of this method is undefined if the nodes, or the topology of the graph, change
     * while iteration is in progress.
     *
     * <p>The returned {@code Iterable} can be iterated over multiple times. Every iterator will
     * compute its next element on the fly. It is thus possible to limit the traversal to a certain
     * number of nodes as follows:
     *
     * <pre>{@code
     * Iterables.limit(
     *     Traverser.forGraph(graph).depthFirstPostOrder(node), maxNumberOfNodes);
     * }</pre>
     *
     * <p>See <a href="https://en.wikipedia.org/wiki/Depth-first_search">Wikipedia</a> for more info.
     *
     * @throws IllegalArgumentException if {@code startNode} is not an element of the graph
     */
    public abstract Iterable<N> depthFirstPostOrder(N startNode);

    /**
     * Returns an unmodifiable {@code Iterable} over the nodes reachable from any of the {@code
     * startNodes}, in the order of a depth-first post-order traversal. This is equivalent to a
     * depth-first post-order traversal of a graph with an additional root node whose successors are
     * the listed {@code startNodes}.
     *
     * @throws IllegalArgumentException if any of {@code startNodes} is not an element of the graph
     * @see #depthFirstPostOrder(Object)
     * @since 24.1
     */
    public abstract Iterable<N> depthFirstPostOrder(Iterable<? extends N> startNodes);

    // Avoid subclasses outside of this class
    private Traverser() {
    }

    private static final class GraphTraverser<N> extends Traverser<N> {
        private final SuccessorsFunction<N> graph;

        GraphTraverser(SuccessorsFunction<N> graph) {
            this.graph = checkNotNull(graph);
        }

        @Override
        public Iterable<N> breadthFirst(final N startNode) {
            checkNotNull(startNode);
            return breadthFirst(ImmutableSet.of(startNode));
        }

        @Override
        public Iterable<N> breadthFirst(final Iterable<? extends N> startNodes) {
            checkNotNull(startNodes);
            if (Iterables.isEmpty(startNodes)) {
                return ImmutableSet.of();
            }
            for (N startNode : startNodes) {
                checkThatNodeIsInGraph(startNode);
            }
            return new Iterable<N>() {
                @Override
                public Iterator<N> iterator() {
                    return new BreadthFirstIterator(startNodes);
                }
            };
        }

        @Override
        public Iterable<N> depthFirstPreOrder(final N startNode) {
            checkNotNull(startNode);
            return depthFirstPreOrder(ImmutableSet.of(startNode));
        }

        @Override
        public Iterable<N> depthFirstPreOrder(final Iterable<? extends N> startNodes) {
            checkNotNull(startNodes);
            if (Iterables.isEmpty(startNodes)) {
                return ImmutableSet.of();
            }
            for (N startNode : startNodes) {
                checkThatNodeIsInGraph(startNode);
            }
            return new Iterable<N>() {
                @Override
                public Iterator<N> iterator() {
                    return new DepthFirstIterator(startNodes, Order.PREORDER);
                }
            };
        }

        @Override
        public Iterable<N> depthFirstPostOrder(final N startNode) {
            checkNotNull(startNode);
            return depthFirstPostOrder(ImmutableSet.of(startNode));
        }

        @Override
        public Iterable<N> depthFirstPostOrder(final Iterable<? extends N> startNodes) {
            checkNotNull(startNodes);
            if (Iterables.isEmpty(startNodes)) {
                return ImmutableSet.of();
            }
            for (N startNode : startNodes) {
                checkThatNodeIsInGraph(startNode);
            }
            return new Iterable<N>() {
                @Override
                public Iterator<N> iterator() {
                    return new DepthFirstIterator(startNodes, Order.POSTORDER);
                }
            };
        }

        @SuppressWarnings("CheckReturnValue")
        private void checkThatNodeIsInGraph(N startNode) {
            // successors() throws an IllegalArgumentException for nodes that are not an element of the
            // graph.
            graph.successors(startNode);
        }

        private final class BreadthFirstIterator extends UnmodifiableIterator<N> {
            private final Queue<N> queue = new ArrayDeque<>();
            private final Set<N> visited = new HashSet<>();

            BreadthFirstIterator(Iterable<? extends N> roots) {
                for (N root : roots) {
                    // add all roots to the queue, skipping duplicates
                    if (visited.add(root)) {
                        queue.add(root);
                    }
                }
            }

            @Override
            public boolean hasNext() {
                return !queue.isEmpty();
            }

            @Override
            public N next() {
                N current = queue.remove();
                for (N neighbor : graph.successors(current)) {
                    if (visited.add(neighbor)) {
                        queue.add(neighbor);
                    }
                }
                return current;
            }
        }

        private final class DepthFirstIterator extends AbstractIterator<N> {
            private final Deque<NodeAndSuccessors> stack = new ArrayDeque<>();
            private final Set<N> visited = new HashSet<>();
            private final Order order;

            DepthFirstIterator(Iterable<? extends N> roots, Order order) {
                stack.push(new NodeAndSuccessors(null, roots));
                this.order = order;
            }

            @Override
            protected N computeNext() {
                while (true) {
                    if (stack.isEmpty()) {
                        return endOfData();
                    }
                    NodeAndSuccessors nodeAndSuccessors = stack.getFirst();
                    boolean firstVisit = visited.add(nodeAndSuccessors.node);
                    boolean lastVisit = !nodeAndSuccessors.successorIterator.hasNext();
                    boolean produceNode = (firstVisit && order == Order.PREORDER)
                            || (lastVisit && order == Order.POSTORDER);
                    if (lastVisit) {
                        stack.pop();
                    } else {
                        // we need to push a neighbor, but only if we haven't already seen it
                        N successor = nodeAndSuccessors.successorIterator.next();
                        if (!visited.contains(successor)) {
                            stack.push(withSuccessors(successor));
                        }
                    }
                    if (produceNode && nodeAndSuccessors.node != null) {
                        return nodeAndSuccessors.node;
                    }
                }
            }

            NodeAndSuccessors withSuccessors(N node) {
                return new NodeAndSuccessors(node, graph.successors(node));
            }

            /** A simple tuple of a node and a partially iterated {@link Iterator} of its successors. */
            private final class NodeAndSuccessors {
                @NullableDecl
                final N node;
                final Iterator<? extends N> successorIterator;

                NodeAndSuccessors(@NullableDecl N node, Iterable<? extends N> successors) {
                    this.node = node;
                    this.successorIterator = successors.iterator();
                }
            }
        }
    }

    private static final class TreeTraverser<N> extends Traverser<N> {
        private final SuccessorsFunction<N> tree;

        TreeTraverser(SuccessorsFunction<N> tree) {
            this.tree = checkNotNull(tree);
        }

        @Override
        public Iterable<N> breadthFirst(final N startNode) {
            checkNotNull(startNode);
            return breadthFirst(ImmutableSet.of(startNode));
        }

        @Override
        public Iterable<N> breadthFirst(final Iterable<? extends N> startNodes) {
            checkNotNull(startNodes);
            if (Iterables.isEmpty(startNodes)) {
                return ImmutableSet.of();
            }
            for (N startNode : startNodes) {
                checkThatNodeIsInTree(startNode);
            }
            return new Iterable<N>() {
                @Override
                public Iterator<N> iterator() {
                    return new BreadthFirstIterator(startNodes);
                }
            };
        }

        @Override
        public Iterable<N> depthFirstPreOrder(final N startNode) {
            checkNotNull(startNode);
            return depthFirstPreOrder(ImmutableSet.of(startNode));
        }

        @Override
        public Iterable<N> depthFirstPreOrder(final Iterable<? extends N> startNodes) {
            checkNotNull(startNodes);
            if (Iterables.isEmpty(startNodes)) {
                return ImmutableSet.of();
            }
            for (N node : startNodes) {
                checkThatNodeIsInTree(node);
            }
            return new Iterable<N>() {
                @Override
                public Iterator<N> iterator() {
                    return new DepthFirstPreOrderIterator(startNodes);
                }
            };
        }

        @Override
        public Iterable<N> depthFirstPostOrder(final N startNode) {
            checkNotNull(startNode);
            return depthFirstPostOrder(ImmutableSet.of(startNode));
        }

        @Override
        public Iterable<N> depthFirstPostOrder(final Iterable<? extends N> startNodes) {
            checkNotNull(startNodes);
            if (Iterables.isEmpty(startNodes)) {
                return ImmutableSet.of();
            }
            for (N startNode : startNodes) {
                checkThatNodeIsInTree(startNode);
            }
            return new Iterable<N>() {
                @Override
                public Iterator<N> iterator() {
                    return new DepthFirstPostOrderIterator(startNodes);
                }
            };
        }

        @SuppressWarnings("CheckReturnValue")
        private void checkThatNodeIsInTree(N startNode) {
            // successors() throws an IllegalArgumentException for nodes that are not an element of the
            // graph.
            tree.successors(startNode);
        }

        private final class BreadthFirstIterator extends UnmodifiableIterator<N> {
            private final Queue<N> queue = new ArrayDeque<>();

            BreadthFirstIterator(Iterable<? extends N> roots) {
                for (N root : roots) {
                    queue.add(root);
                }
            }

            @Override
            public boolean hasNext() {
                return !queue.isEmpty();
            }

            @Override
            public N next() {
                N current = queue.remove();
                Iterables.addAll(queue, tree.successors(current));
                return current;
            }
        }

        private final class DepthFirstPreOrderIterator extends UnmodifiableIterator<N> {
            private final Deque<Iterator<? extends N>> stack = new ArrayDeque<>();

            DepthFirstPreOrderIterator(Iterable<? extends N> roots) {
                stack.addLast(roots.iterator());
            }

            @Override
            public boolean hasNext() {
                return !stack.isEmpty();
            }

            @Override
            public N next() {
                Iterator<? extends N> iterator = stack.getLast(); // throws NoSuchElementException if empty
                N result = checkNotNull(iterator.next());
                if (!iterator.hasNext()) {
                    stack.removeLast();
                }
                Iterator<? extends N> childIterator = tree.successors(result).iterator();
                if (childIterator.hasNext()) {
                    stack.addLast(childIterator);
                }
                return result;
            }
        }

        private final class DepthFirstPostOrderIterator extends AbstractIterator<N> {
            private final ArrayDeque<NodeAndChildren> stack = new ArrayDeque<>();

            DepthFirstPostOrderIterator(Iterable<? extends N> roots) {
                stack.addLast(new NodeAndChildren(null, roots));
            }

            @Override
            protected N computeNext() {
                while (!stack.isEmpty()) {
                    NodeAndChildren top = stack.getLast();
                    if (top.childIterator.hasNext()) {
                        N child = top.childIterator.next();
                        stack.addLast(withChildren(child));
                    } else {
                        stack.removeLast();
                        if (top.node != null) {
                            return top.node;
                        }
                    }
                }
                return endOfData();
            }

            NodeAndChildren withChildren(N node) {
                return new NodeAndChildren(node, tree.successors(node));
            }

            /** A simple tuple of a node and a partially iterated {@link Iterator} of its children. */
            private final class NodeAndChildren {
                @NullableDecl
                final N node;
                final Iterator<? extends N> childIterator;

                NodeAndChildren(@NullableDecl N node, Iterable<? extends N> children) {
                    this.node = node;
                    this.childIterator = children.iterator();
                }
            }
        }
    }

    private enum Order {
        PREORDER, POSTORDER
    }
}