Java tutorial
/* * Copyright (C) 2014 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.graph; import static com.google.common.base.Preconditions.checkNotNull; import com.google.common.base.Function; import com.google.common.collect.ImmutableMap; import com.google.common.collect.ImmutableSet; import com.google.common.collect.Maps; import java.util.Map; import java.util.Set; /** * A {@link Network} whose relationships are constant. Instances of this class may be obtained * with {@link #copyOf(Network)}. * * <p>The time complexity of {@code edgesConnecting(node1, node2)} is O(min(outD_node1, inD_node2)). * * @author James Sexton * @author Joshua O'Madadhain * @author Omar Darwish * @param <N> Node parameter type * @param <E> Edge parameter type */ public final class ImmutableNetwork<N, E> extends AbstractConfigurableNetwork<N, E> { private ImmutableNetwork(Network<N, E> graph) { super(NetworkBuilder.from(graph), getNodeConnections(graph), getEdgeToReferenceNode(graph)); } /** * Returns an immutable copy of {@code graph}. */ public static <N, E> ImmutableNetwork<N, E> copyOf(Network<N, E> graph) { return (graph instanceof ImmutableNetwork) ? (ImmutableNetwork<N, E>) graph : new ImmutableNetwork<N, E>(graph); } /** * Simply returns its argument. * * @deprecated no need to use this */ @Deprecated public static <N, E> ImmutableNetwork<N, E> copyOf(ImmutableNetwork<N, E> graph) { return checkNotNull(graph); } @Override public Set<E> edgesConnecting(Object node1, Object node2) { // This set is calculated as the intersection of two sets, and is likely to be small. // As an optimization, copy it to an ImmutableSet so re-iterating is fast. return ImmutableSet.copyOf(super.edgesConnecting(node1, node2)); } private static <N, E> Map<N, NodeConnections<N, E>> getNodeConnections(Network<N, E> graph) { ImmutableMap.Builder<N, NodeConnections<N, E>> nodeConnections = ImmutableMap.builder(); for (N node : graph.nodes()) { nodeConnections.put(node, nodeConnectionsOf(graph, node)); } return nodeConnections.build(); } private static <N, E> Map<E, N> getEdgeToReferenceNode(Network<N, E> graph) { ImmutableMap.Builder<E, N> edgeToReferenceNode = ImmutableMap.builder(); for (E edge : graph.edges()) { edgeToReferenceNode.put(edge, graph.incidentNodes(edge).iterator().next()); } return edgeToReferenceNode.build(); } private static <N, E> NodeConnections<N, E> nodeConnectionsOf(Network<N, E> graph, N node) { if (graph.isDirected()) { Map<E, N> inEdgeMap = Maps.asMap(graph.inEdges(node), sourceNodeFn(graph)); Map<E, N> outEdgeMap = Maps.asMap(graph.outEdges(node), targetNodeFn(graph)); return graph.allowsParallelEdges() ? DirectedMultiNodeConnections.ofImmutable(inEdgeMap, outEdgeMap) : DirectedNodeConnections.ofImmutable(inEdgeMap, outEdgeMap); } else { Map<E, N> incidentEdgeMap = Maps.asMap(graph.incidentEdges(node), oppositeNodeFn(graph, node)); return graph.allowsParallelEdges() ? UndirectedMultiNodeConnections.ofImmutable(incidentEdgeMap) : UndirectedNodeConnections.ofImmutable(incidentEdgeMap); } } private static <N, E> Function<E, N> sourceNodeFn(final Network<N, E> graph) { return new Function<E, N>() { @Override public N apply(E edge) { return graph.source(edge); } }; } private static <N, E> Function<E, N> targetNodeFn(final Network<N, E> graph) { return new Function<E, N>() { @Override public N apply(E edge) { return graph.target(edge); } }; } private static <N, E> Function<E, N> oppositeNodeFn(final Network<N, E> graph, final N node) { return new Function<E, N>() { @Override public N apply(E edge) { return Graphs.oppositeNode(graph, edge, node); } }; } }