com.google.common.geometry.S2Cell.java Source code

Java tutorial

Introduction

Here is the source code for com.google.common.geometry.S2Cell.java

Source

/*
 * Copyright 2005 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.google.common.geometry;

/**
 * An S2Cell is an S2Region object that represents a cell. Unlike S2CellIds, it
 * supports efficient containment and intersection tests. However, it is also a
 * more expensive representation.
 *
 */

public final strictfp class S2Cell implements S2Region {

    private static final int MAX_CELL_SIZE = 1 << S2CellId.MAX_LEVEL;

    byte face;
    byte level;
    byte orientation;
    S2CellId cellId;
    double[][] uv = new double[2][2];

    /**
     * Default constructor used only internally.
     */
    S2Cell() {
    }

    /**
     * An S2Cell always corresponds to a particular S2CellId. The other
     * constructors are just convenience methods.
     */
    public S2Cell(S2CellId id) {
        init(id);
    }

    // This is a static method in order to provide named parameters.
    public static S2Cell fromFacePosLevel(int face, byte pos, int level) {
        return new S2Cell(S2CellId.fromFacePosLevel(face, pos, level));
    }

    // Convenience methods.
    public S2Cell(S2Point p) {
        init(S2CellId.fromPoint(p));
    }

    public S2Cell(S2LatLng ll) {
        init(S2CellId.fromLatLng(ll));
    }

    public S2CellId id() {
        return cellId;
    }

    public int face() {
        return face;
    }

    public byte level() {
        return level;
    }

    public byte orientation() {
        return orientation;
    }

    public boolean isLeaf() {
        return level == S2CellId.MAX_LEVEL;
    }

    public S2Point getVertex(int k) {
        return S2Point.normalize(getVertexRaw(k));
    }

    /**
     * Return the k-th vertex of the cell (k = 0,1,2,3). Vertices are returned in
     * CCW order. The points returned by GetVertexRaw are not necessarily unit
     * length.
     */
    public S2Point getVertexRaw(int k) {
        // Vertices are returned in the order SW, SE, NE, NW.
        return S2Projections.faceUvToXyz(face, uv[0][(k >> 1) ^ (k & 1)], uv[1][k >> 1]);
    }

    public S2Point getEdge(int k) {
        return S2Point.normalize(getEdgeRaw(k));
    }

    public S2Point getEdgeRaw(int k) {
        switch (k) {
        case 0:
            return S2Projections.getVNorm(face, uv[1][0]); // South
        case 1:
            return S2Projections.getUNorm(face, uv[0][1]); // East
        case 2:
            return S2Point.neg(S2Projections.getVNorm(face, uv[1][1])); // North
        default:
            return S2Point.neg(S2Projections.getUNorm(face, uv[0][0])); // West
        }
    }

    /**
     * Return the inward-facing normal of the great circle passing through the
     * edge from vertex k to vertex k+1 (mod 4). The normals returned by
     * GetEdgeRaw are not necessarily unit length.
     *
     *  If this is not a leaf cell, set children[0..3] to the four children of
     * this cell (in traversal order) and return true. Otherwise returns false.
     * This method is equivalent to the following:
     *
     *  for (pos=0, id=child_begin(); id != child_end(); id = id.next(), ++pos)
     * children[i] = S2Cell(id);
     *
     * except that it is more than two times faster.
     */
    public boolean subdivide(S2Cell children[]) {
        // This function is equivalent to just iterating over the child cell ids
        // and calling the S2Cell constructor, but it is about 2.5 times faster.

        if (cellId.isLeaf()) {
            return false;
        }

        // Compute the cell midpoint in uv-space.
        R2Vector uvMid = getCenterUV();

        // Create four children with the appropriate bounds.
        S2CellId id = cellId.childBegin();
        for (int pos = 0; pos < 4; ++pos, id = id.next()) {
            S2Cell child = children[pos];
            child.face = face;
            child.level = (byte) (level + 1);
            child.orientation = (byte) (orientation ^ S2.posToOrientation(pos));
            child.cellId = id;
            int ij = S2.posToIJ(orientation, pos);
            for (int d = 0; d < 2; ++d) {
                // The dimension 0 index (i/u) is in bit 1 of ij.
                int m = 1 - ((ij >> (1 - d)) & 1);
                child.uv[d][m] = uvMid.get(d);
                child.uv[d][1 - m] = uv[d][1 - m];
            }
        }
        return true;
    }

    /**
     * Return the direction vector corresponding to the center in (s,t)-space of
     * the given cell. This is the point at which the cell is divided into four
     * subcells; it is not necessarily the centroid of the cell in (u,v)-space or
     * (x,y,z)-space. The point returned by GetCenterRaw is not necessarily unit
     * length.
     */
    public S2Point getCenter() {
        return S2Point.normalize(getCenterRaw());
    }

    public S2Point getCenterRaw() {
        return cellId.toPointRaw();
    }

    /**
     * Return the center of the cell in (u,v) coordinates (see {@code
     * S2Projections}). Note that the center of the cell is defined as the point
     * at which it is recursively subdivided into four children; in general, it is
     * not at the midpoint of the (u,v) rectangle covered by the cell
     */
    public R2Vector getCenterUV() {
        MutableInteger i = new MutableInteger(0);
        MutableInteger j = new MutableInteger(0);
        cellId.toFaceIJOrientation(i, j, null);
        int cellSize = 1 << (S2CellId.MAX_LEVEL - level);

        // TODO(dbeaumont): Figure out a better naming of the variables here (and elsewhere).
        int si = (i.intValue() & -cellSize) * 2 + cellSize - MAX_CELL_SIZE;
        double x = S2Projections.stToUV((1.0 / MAX_CELL_SIZE) * si);

        int sj = (j.intValue() & -cellSize) * 2 + cellSize - MAX_CELL_SIZE;
        double y = S2Projections.stToUV((1.0 / MAX_CELL_SIZE) * sj);

        return new R2Vector(x, y);
    }

    /**
     * Return the average area for cells at the given level.
     */
    public static double averageArea(int level) {
        return S2Projections.AVG_AREA.getValue(level);
    }

    /**
     * Return the average area of cells at this level. This is accurate to within
     * a factor of 1.7 (for S2_QUADRATIC_PROJECTION) and is extremely cheap to
     * compute.
     */
    public double averageArea() {
        return averageArea(level);
    }

    /**
     * Return the approximate area of this cell. This method is accurate to within
     * 3% percent for all cell sizes and accurate to within 0.1% for cells at
     * level 5 or higher (i.e. 300km square or smaller). It is moderately cheap to
     * compute.
     */
    public double approxArea() {

        // All cells at the first two levels have the same area.
        if (level < 2) {
            return averageArea(level);
        }

        // First, compute the approximate area of the cell when projected
        // perpendicular to its normal. The cross product of its diagonals gives
        // the normal, and the length of the normal is twice the projected area.
        double flatArea = 0.5 * S2Point
                .crossProd(S2Point.sub(getVertex(2), getVertex(0)), S2Point.sub(getVertex(3), getVertex(1))).norm();

        // Now, compensate for the curvature of the cell surface by pretending
        // that the cell is shaped like a spherical cap. The ratio of the
        // area of a spherical cap to the area of its projected disc turns out
        // to be 2 / (1 + sqrt(1 - r*r)) where "r" is the radius of the disc.
        // For example, when r=0 the ratio is 1, and when r=1 the ratio is 2.
        // Here we set Pi*r*r == flat_area to find the equivalent disc.
        return flatArea * 2 / (1 + Math.sqrt(1 - Math.min(S2.M_1_PI * flatArea, 1.0)));
    }

    /**
     * Return the area of this cell as accurately as possible. This method is more
     * expensive but it is accurate to 6 digits of precision even for leaf cells
     * (whose area is approximately 1e-18).
     */
    public double exactArea() {
        S2Point v0 = getVertex(0);
        S2Point v1 = getVertex(1);
        S2Point v2 = getVertex(2);
        S2Point v3 = getVertex(3);
        return S2.area(v0, v1, v2) + S2.area(v0, v2, v3);
    }

    // //////////////////////////////////////////////////////////////////////
    // S2Region interface (see {@code S2Region} for details):

    @Override
    public S2Region clone() {
        S2Cell clone = new S2Cell();
        clone.face = this.face;
        clone.level = this.level;
        clone.orientation = this.orientation;
        clone.uv = this.uv.clone();

        return clone;
    }

    @Override
    public S2Cap getCapBound() {
        // Use the cell center in (u,v)-space as the cap axis. This vector is
        // very close to GetCenter() and faster to compute. Neither one of these
        // vectors yields the bounding cap with minimal surface area, but they
        // are both pretty close.
        //
        // It's possible to show that the two vertices that are furthest from
        // the (u,v)-origin never determine the maximum cap size (this is a
        // possible future optimization).

        double u = 0.5 * (uv[0][0] + uv[0][1]);
        double v = 0.5 * (uv[1][0] + uv[1][1]);
        S2Cap cap = S2Cap.fromAxisHeight(S2Point.normalize(S2Projections.faceUvToXyz(face, u, v)), 0);
        for (int k = 0; k < 4; ++k) {
            cap = cap.addPoint(getVertex(k));
        }
        return cap;
    }

    // We grow the bounds slightly to make sure that the bounding rectangle
    // also contains the normalized versions of the vertices. Note that the
    // maximum result magnitude is Pi, with a floating-point exponent of 1.
    // Therefore adding or subtracting 2**-51 will always change the result.
    private static final double MAX_ERROR = 1.0 / (1L << 51);

    // The 4 cells around the equator extend to +/-45 degrees latitude at the
    // midpoints of their top and bottom edges. The two cells covering the
    // poles extend down to +/-35.26 degrees at their vertices.
    // adding kMaxError (as opposed to the C version) because of asin and atan2
    // roundoff errors
    private static final double POLE_MIN_LAT = Math.asin(Math.sqrt(1.0 / 3.0)) - MAX_ERROR;
    // 35.26 degrees

    @Override
    public S2LatLngRect getRectBound() {
        if (level > 0) {
            // Except for cells at level 0, the latitude and longitude extremes are
            // attained at the vertices. Furthermore, the latitude range is
            // determined by one pair of diagonally opposite vertices and the
            // longitude range is determined by the other pair.
            //
            // We first determine which corner (i,j) of the cell has the largest
            // absolute latitude. To maximize latitude, we want to find the point in
            // the cell that has the largest absolute z-coordinate and the smallest
            // absolute x- and y-coordinates. To do this we look at each coordinate
            // (u and v), and determine whether we want to minimize or maximize that
            // coordinate based on the axis direction and the cell's (u,v) quadrant.
            double u = uv[0][0] + uv[0][1];
            double v = uv[1][0] + uv[1][1];
            int i = S2Projections.getUAxis(face).z == 0 ? (u < 0 ? 1 : 0) : (u > 0 ? 1 : 0);
            int j = S2Projections.getVAxis(face).z == 0 ? (v < 0 ? 1 : 0) : (v > 0 ? 1 : 0);

            R1Interval lat = R1Interval.fromPointPair(getLatitude(i, j), getLatitude(1 - i, 1 - j));
            lat = lat.expanded(MAX_ERROR).intersection(S2LatLngRect.fullLat());
            if (lat.lo() == -S2.M_PI_2 || lat.hi() == S2.M_PI_2) {
                return new S2LatLngRect(lat, S1Interval.full());
            }
            S1Interval lng = S1Interval.fromPointPair(getLongitude(i, 1 - j), getLongitude(1 - i, j));
            return new S2LatLngRect(lat, lng.expanded(MAX_ERROR));
        }

        // The face centers are the +X, +Y, +Z, -X, -Y, -Z axes in that order.
        // assert (S2Projections.getNorm(face).get(face % 3) == ((face < 3) ? 1 : -1));
        switch (face) {
        case 0:
            return new S2LatLngRect(new R1Interval(-S2.M_PI_4, S2.M_PI_4), new S1Interval(-S2.M_PI_4, S2.M_PI_4));
        case 1:
            return new S2LatLngRect(new R1Interval(-S2.M_PI_4, S2.M_PI_4),
                    new S1Interval(S2.M_PI_4, 3 * S2.M_PI_4));
        case 2:
            return new S2LatLngRect(new R1Interval(POLE_MIN_LAT, S2.M_PI_2), new S1Interval(-S2.M_PI, S2.M_PI));
        case 3:
            return new S2LatLngRect(new R1Interval(-S2.M_PI_4, S2.M_PI_4),
                    new S1Interval(3 * S2.M_PI_4, -3 * S2.M_PI_4));
        case 4:
            return new S2LatLngRect(new R1Interval(-S2.M_PI_4, S2.M_PI_4),
                    new S1Interval(-3 * S2.M_PI_4, -S2.M_PI_4));
        default:
            return new S2LatLngRect(new R1Interval(-S2.M_PI_2, -POLE_MIN_LAT), new S1Interval(-S2.M_PI, S2.M_PI));
        }

    }

    @Override
    public boolean mayIntersect(S2Cell cell) {
        return cellId.intersects(cell.cellId);
    }

    public boolean contains(S2Point p) {
        // We can't just call XYZtoFaceUV, because for points that lie on the
        // boundary between two faces (i.e. u or v is +1/-1) we need to return
        // true for both adjacent cells.
        R2Vector uvPoint = S2Projections.faceXyzToUv(face, p);
        if (uvPoint == null) {
            return false;
        }
        return (uvPoint.x() >= uv[0][0] && uvPoint.x() <= uv[0][1] && uvPoint.y() >= uv[1][0]
                && uvPoint.y() <= uv[1][1]);
    }

    // The point 'p' does not need to be normalized.
    @Override
    public boolean contains(S2Cell cell) {
        return cellId.contains(cell.cellId);
    }

    private void init(S2CellId id) {
        cellId = id;
        MutableInteger ij[] = new MutableInteger[2];
        MutableInteger mOrientation = new MutableInteger(0);

        for (int d = 0; d < 2; ++d) {
            ij[d] = new MutableInteger(0);
        }

        face = (byte) id.toFaceIJOrientation(ij[0], ij[1], mOrientation);
        orientation = (byte) mOrientation.intValue(); // Compress int to a byte.
        level = (byte) id.level();
        int cellSize = 1 << (S2CellId.MAX_LEVEL - level);
        for (int d = 0; d < 2; ++d) {
            // Compute the cell bounds in scaled (i,j) coordinates.
            int sijLo = (ij[d].intValue() & -cellSize) * 2 - MAX_CELL_SIZE;
            int sijHi = sijLo + cellSize * 2;
            uv[d][0] = S2Projections.stToUV((1.0 / MAX_CELL_SIZE) * sijLo);
            uv[d][1] = S2Projections.stToUV((1.0 / MAX_CELL_SIZE) * sijHi);
        }
    }

    // Internal method that does the actual work in the constructors.

    private double getLatitude(int i, int j) {
        S2Point p = S2Projections.faceUvToXyz(face, uv[0][i], uv[1][j]);
        return Math.atan2(p.z, Math.sqrt(p.x * p.x + p.y * p.y));
    }

    private double getLongitude(int i, int j) {
        S2Point p = S2Projections.faceUvToXyz(face, uv[0][i], uv[1][j]);
        return Math.atan2(p.y, p.x);
    }

    // Return the latitude or longitude of the cell vertex given by (i,j),
    // where "i" and "j" are either 0 or 1.

    @Override
    public String toString() {
        return "[" + face + ", " + level + ", " + orientation + ", " + cellId + "]";
    }

    @Override
    public int hashCode() {
        int value = 17;
        value = 37 * (37 * (37 * value + face) + orientation) + level;
        return 37 * value + id().hashCode();
    }

    @Override
    public boolean equals(Object that) {
        if (that instanceof S2Cell) {
            S2Cell thatCell = (S2Cell) that;
            return this.face == thatCell.face && this.level == thatCell.level
                    && this.orientation == thatCell.orientation && this.cellId.equals(thatCell.cellId);
        }
        return false;
    }

}