com.google.common.collect.MinMaxPriorityQueue.java Source code

Java tutorial

Introduction

Here is the source code for com.google.common.collect.MinMaxPriorityQueue.java

Source

/*
 * Copyright (C) 2010 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndex;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.collect.CollectPreconditions.checkRemove;

import com.google.common.annotations.Beta;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.math.IntMath;
import com.google.j2objc.annotations.Weak;
import com.google.j2objc.annotations.WeakOuter;

import java.util.AbstractQueue;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;
import java.util.PriorityQueue;
import java.util.Queue;

/**
 * A double-ended priority queue, which provides constant-time access to both
 * its least element and its greatest element, as determined by the queue's
 * specified comparator. If no comparator is given at creation time, the
 * natural order of elements is used. If no maximum size is given at creation time,
 * the queue is unbounded.
 *
 * <p>Usage example: <pre>   {@code
 *
 *   MinMaxPriorityQueue<User> users = MinMaxPriorityQueue.orderedBy(userComparator)
 *       .maximumSize(1000)
 *       .create();}</pre>
 *
 * <p>As a {@link Queue} it functions exactly as a {@link PriorityQueue}: its
 * head element -- the implicit target of the methods {@link #peek()}, {@link
 * #poll()} and {@link #remove()} -- is defined as the <i>least</i> element in
 * the queue according to the queue's comparator. But unlike a regular priority
 * queue, the methods {@link #peekLast}, {@link #pollLast} and
 * {@link #removeLast} are also provided, to act on the <i>greatest</i> element
 * in the queue instead.
 *
 * <p>A min-max priority queue can be configured with a maximum size. If so,
 * each time the size of the queue exceeds that value, the queue automatically
 * removes its greatest element according to its comparator (which might be the
 * element that was just added). This is different from conventional bounded
 * queues, which either block or reject new elements when full.
 *
 * <p>This implementation is based on the
 * <a href="http://portal.acm.org/citation.cfm?id=6621">min-max heap</a>
 * developed by Atkinson, et al. Unlike many other double-ended priority queues,
 * it stores elements in a single array, as compact as the traditional heap data
 * structure used in {@link PriorityQueue}.
 *
 * <p>This class is not thread-safe, and does not accept null elements.
 *
 * <p><i>Performance notes:</i>
 *
 * <ul>
 * <li>If you only access one end of the queue, and do use a maximum size,
 *     this class will perform significantly worse than a {@code PriorityQueue}
 *     with manual eviction above the maximum size.  In many cases
 *     {@link Ordering#leastOf} may work for your use case with significantly
 *     improved (and asymptotically superior) performance.
 * <li>The retrieval operations {@link #peek}, {@link #peekFirst}, {@link
 *     #peekLast}, {@link #element}, and {@link #size} are constant-time.
 * <li>The enqueing and dequeing operations ({@link #offer}, {@link #add}, and
 *     all the forms of {@link #poll} and {@link #remove()}) run in {@code
 *     O(log n) time}.
 * <li>The {@link #remove(Object)} and {@link #contains} operations require
 *     linear ({@code O(n)}) time.
 * <li>If you only access one end of the queue, and don't use a maximum size,
 *     this class is functionally equivalent to {@link PriorityQueue}, but
 *     significantly slower.
 * </ul>
 *
 * @author Sverre Sundsdal
 * @author Torbjorn Gannholm
 * @since 8.0
 */
// TODO(kevinb): GWT compatibility
@Beta
public final class MinMaxPriorityQueue<E> extends AbstractQueue<E> {

    /**
     * Creates a new min-max priority queue with default settings: natural order,
     * no maximum size, no initial contents, and an initial expected size of 11.
     */
    public static <E extends Comparable<E>> MinMaxPriorityQueue<E> create() {
        return new Builder<Comparable>(Ordering.natural()).create();
    }

    /**
     * Creates a new min-max priority queue using natural order, no maximum size,
     * and initially containing the given elements.
     */
    public static <E extends Comparable<E>> MinMaxPriorityQueue<E> create(Iterable<? extends E> initialContents) {
        return new Builder<E>(Ordering.<E>natural()).create(initialContents);
    }

    /**
     * Creates and returns a new builder, configured to build {@code
     * MinMaxPriorityQueue} instances that use {@code comparator} to determine the
     * least and greatest elements.
     */
    public static <B> Builder<B> orderedBy(Comparator<B> comparator) {
        return new Builder<B>(comparator);
    }

    /**
     * Creates and returns a new builder, configured to build {@code
     * MinMaxPriorityQueue} instances sized appropriately to hold {@code
     * expectedSize} elements.
     */
    public static Builder<Comparable> expectedSize(int expectedSize) {
        return new Builder<Comparable>(Ordering.natural()).expectedSize(expectedSize);
    }

    /**
     * Creates and returns a new builder, configured to build {@code
     * MinMaxPriorityQueue} instances that are limited to {@code maximumSize}
     * elements. Each time a queue grows beyond this bound, it immediately
     * removes its greatest element (according to its comparator), which might be
     * the element that was just added.
     */
    public static Builder<Comparable> maximumSize(int maximumSize) {
        return new Builder<Comparable>(Ordering.natural()).maximumSize(maximumSize);
    }

    /**
     * The builder class used in creation of min-max priority queues. Instead of
     * constructing one directly, use {@link
     * MinMaxPriorityQueue#orderedBy(Comparator)}, {@link
     * MinMaxPriorityQueue#expectedSize(int)} or {@link
     * MinMaxPriorityQueue#maximumSize(int)}.
     *
     * @param <B> the upper bound on the eventual type that can be produced by
     *     this builder (for example, a {@code Builder<Number>} can produce a
     *     {@code Queue<Number>} or {@code Queue<Integer>} but not a {@code
     *     Queue<Object>}).
     * @since 8.0
     */
    @Beta
    public static final class Builder<B> {
        /*
         * TODO(kevinb): when the dust settles, see if we still need this or can
         * just default to DEFAULT_CAPACITY.
         */
        private static final int UNSET_EXPECTED_SIZE = -1;

        private final Comparator<B> comparator;
        private int expectedSize = UNSET_EXPECTED_SIZE;
        private int maximumSize = Integer.MAX_VALUE;

        private Builder(Comparator<B> comparator) {
            this.comparator = checkNotNull(comparator);
        }

        /**
         * Configures this builder to build min-max priority queues with an initial
         * expected size of {@code expectedSize}.
         */
        public Builder<B> expectedSize(int expectedSize) {
            checkArgument(expectedSize >= 0);
            this.expectedSize = expectedSize;
            return this;
        }

        /**
         * Configures this builder to build {@code MinMaxPriorityQueue} instances
         * that are limited to {@code maximumSize} elements. Each time a queue grows
         * beyond this bound, it immediately removes its greatest element (according
         * to its comparator), which might be the element that was just added.
         */
        public Builder<B> maximumSize(int maximumSize) {
            checkArgument(maximumSize > 0);
            this.maximumSize = maximumSize;
            return this;
        }

        /**
         * Builds a new min-max priority queue using the previously specified
         * options, and having no initial contents.
         */
        public <T extends B> MinMaxPriorityQueue<T> create() {
            return create(Collections.<T>emptySet());
        }

        /**
         * Builds a new min-max priority queue using the previously specified
         * options, and having the given initial elements.
         */
        public <T extends B> MinMaxPriorityQueue<T> create(Iterable<? extends T> initialContents) {
            MinMaxPriorityQueue<T> queue = new MinMaxPriorityQueue<T>(this,
                    initialQueueSize(expectedSize, maximumSize, initialContents));
            for (T element : initialContents) {
                queue.offer(element);
            }
            return queue;
        }

        @SuppressWarnings("unchecked") // safe "contravariant cast"
        private <T extends B> Ordering<T> ordering() {
            return Ordering.from((Comparator<T>) comparator);
        }
    }

    private final Heap minHeap;
    private final Heap maxHeap;
    @VisibleForTesting
    final int maximumSize;
    private Object[] queue;
    private int size;
    private int modCount;

    private MinMaxPriorityQueue(Builder<? super E> builder, int queueSize) {
        Ordering<E> ordering = builder.ordering();
        this.minHeap = new Heap(ordering);
        this.maxHeap = new Heap(ordering.reverse());
        minHeap.otherHeap = maxHeap;
        maxHeap.otherHeap = minHeap;

        this.maximumSize = builder.maximumSize;
        // TODO(kevinb): pad?
        this.queue = new Object[queueSize];
    }

    @Override
    public int size() {
        return size;
    }

    /**
     * Adds the given element to this queue. If this queue has a maximum size,
     * after adding {@code element} the queue will automatically evict its
     * greatest element (according to its comparator), which may be {@code
     * element} itself.
     *
     * @return {@code true} always
     */
    @Override
    public boolean add(E element) {
        offer(element);
        return true;
    }

    @Override
    public boolean addAll(Collection<? extends E> newElements) {
        boolean modified = false;
        for (E element : newElements) {
            offer(element);
            modified = true;
        }
        return modified;
    }

    /**
     * Adds the given element to this queue. If this queue has a maximum size,
     * after adding {@code element} the queue will automatically evict its
     * greatest element (according to its comparator), which may be {@code
     * element} itself.
     */
    @Override
    public boolean offer(E element) {
        checkNotNull(element);
        modCount++;
        int insertIndex = size++;

        growIfNeeded();

        // Adds the element to the end of the heap and bubbles it up to the correct
        // position.
        heapForIndex(insertIndex).bubbleUp(insertIndex, element);
        return size <= maximumSize || pollLast() != element;
    }

    @Override
    public E poll() {
        return isEmpty() ? null : removeAndGet(0);
    }

    @SuppressWarnings("unchecked") // we must carefully only allow Es to get in
    E elementData(int index) {
        return (E) queue[index];
    }

    @Override
    public E peek() {
        return isEmpty() ? null : elementData(0);
    }

    /**
     * Returns the index of the max element.
     */
    private int getMaxElementIndex() {
        switch (size) {
        case 1:
            return 0; // The lone element in the queue is the maximum.
        case 2:
            return 1; // The lone element in the maxHeap is the maximum.
        default:
            // The max element must sit on the first level of the maxHeap. It is
            // actually the *lesser* of the two from the maxHeap's perspective.
            return (maxHeap.compareElements(1, 2) <= 0) ? 1 : 2;
        }
    }

    /**
     * Removes and returns the least element of this queue, or returns {@code
     * null} if the queue is empty.
     */
    public E pollFirst() {
        return poll();
    }

    /**
     * Removes and returns the least element of this queue.
     *
     * @throws NoSuchElementException if the queue is empty
     */
    public E removeFirst() {
        return remove();
    }

    /**
     * Retrieves, but does not remove, the least element of this queue, or returns
     * {@code null} if the queue is empty.
     */
    public E peekFirst() {
        return peek();
    }

    /**
     * Removes and returns the greatest element of this queue, or returns {@code
     * null} if the queue is empty.
     */
    public E pollLast() {
        return isEmpty() ? null : removeAndGet(getMaxElementIndex());
    }

    /**
     * Removes and returns the greatest element of this queue.
     *
     * @throws NoSuchElementException if the queue is empty
     */
    public E removeLast() {
        if (isEmpty()) {
            throw new NoSuchElementException();
        }
        return removeAndGet(getMaxElementIndex());
    }

    /**
     * Retrieves, but does not remove, the greatest element of this queue, or
     * returns {@code null} if the queue is empty.
     */
    public E peekLast() {
        return isEmpty() ? null : elementData(getMaxElementIndex());
    }

    /**
     * Removes the element at position {@code index}.
     *
     * <p>Normally this method leaves the elements at up to {@code index - 1},
     * inclusive, untouched.  Under these circumstances, it returns {@code null}.
     *
     * <p>Occasionally, in order to maintain the heap invariant, it must swap a
     * later element of the list with one before {@code index}. Under these
     * circumstances it returns a pair of elements as a {@link MoveDesc}. The
     * first one is the element that was previously at the end of the heap and is
     * now at some position before {@code index}. The second element is the one
     * that was swapped down to replace the element at {@code index}. This fact is
     * used by iterator.remove so as to visit elements during a traversal once and
     * only once.
     */
    @VisibleForTesting
    MoveDesc<E> removeAt(int index) {
        checkPositionIndex(index, size);
        modCount++;
        size--;
        if (size == index) {
            queue[size] = null;
            return null;
        }
        E actualLastElement = elementData(size);
        int lastElementAt = heapForIndex(size).getCorrectLastElement(actualLastElement);
        E toTrickle = elementData(size);
        queue[size] = null;
        MoveDesc<E> changes = fillHole(index, toTrickle);
        if (lastElementAt < index) {
            // Last element is moved to before index, swapped with trickled element.
            if (changes == null) {
                // The trickled element is still after index.
                return new MoveDesc<E>(actualLastElement, toTrickle);
            } else {
                // The trickled element is back before index, but the replaced element
                // has now been moved after index.
                return new MoveDesc<E>(actualLastElement, changes.replaced);
            }
        }
        // Trickled element was after index to begin with, no adjustment needed.
        return changes;
    }

    private MoveDesc<E> fillHole(int index, E toTrickle) {
        Heap heap = heapForIndex(index);
        // We consider elementData(index) a "hole", and we want to fill it
        // with the last element of the heap, toTrickle.
        // Since the last element of the heap is from the bottom level, we
        // optimistically fill index position with elements from lower levels,
        // moving the hole down. In most cases this reduces the number of
        // comparisons with toTrickle, but in some cases we will need to bubble it
        // all the way up again.
        int vacated = heap.fillHoleAt(index);
        // Try to see if toTrickle can be bubbled up min levels.
        int bubbledTo = heap.bubbleUpAlternatingLevels(vacated, toTrickle);
        if (bubbledTo == vacated) {
            // Could not bubble toTrickle up min levels, try moving
            // it from min level to max level (or max to min level) and bubble up
            // there.
            return heap.tryCrossOverAndBubbleUp(index, vacated, toTrickle);
        } else {
            return (bubbledTo < index) ? new MoveDesc<E>(toTrickle, elementData(index)) : null;
        }
    }

    // Returned from removeAt() to iterator.remove()
    static class MoveDesc<E> {
        final E toTrickle;
        final E replaced;

        MoveDesc(E toTrickle, E replaced) {
            this.toTrickle = toTrickle;
            this.replaced = replaced;
        }
    }

    /**
     * Removes and returns the value at {@code index}.
     */
    private E removeAndGet(int index) {
        E value = elementData(index);
        removeAt(index);
        return value;
    }

    private Heap heapForIndex(int i) {
        return isEvenLevel(i) ? minHeap : maxHeap;
    }

    private static final int EVEN_POWERS_OF_TWO = 0x55555555;
    private static final int ODD_POWERS_OF_TWO = 0xaaaaaaaa;

    @VisibleForTesting
    static boolean isEvenLevel(int index) {
        int oneBased = index + 1;
        checkState(oneBased > 0, "negative index");
        return (oneBased & EVEN_POWERS_OF_TWO) > (oneBased & ODD_POWERS_OF_TWO);
    }

    /**
     * Returns {@code true} if the MinMax heap structure holds. This is only used
     * in testing.
     *
     * TODO(kevinb): move to the test class?
     */
    @VisibleForTesting
    boolean isIntact() {
        for (int i = 1; i < size; i++) {
            if (!heapForIndex(i).verifyIndex(i)) {
                return false;
            }
        }
        return true;
    }

    /**
     * Each instance of MinMaxPriortyQueue encapsulates two instances of Heap:
     * a min-heap and a max-heap. Conceptually, these might each have their own
     * array for storage, but for efficiency's sake they are stored interleaved on
     * alternate heap levels in the same array (MMPQ.queue).
     */
    @WeakOuter
    private class Heap {
        final Ordering<E> ordering;
        @Weak
        Heap otherHeap;

        Heap(Ordering<E> ordering) {
            this.ordering = ordering;
        }

        int compareElements(int a, int b) {
            return ordering.compare(elementData(a), elementData(b));
        }

        /**
         * Tries to move {@code toTrickle} from a min to a max level and
         * bubble up there. If it moved before {@code removeIndex} this method
         * returns a pair as described in {@link #removeAt}.
         */
        MoveDesc<E> tryCrossOverAndBubbleUp(int removeIndex, int vacated, E toTrickle) {
            int crossOver = crossOver(vacated, toTrickle);
            if (crossOver == vacated) {
                return null;
            }
            // Successfully crossed over from min to max.
            // Bubble up max levels.
            E parent;
            // If toTrickle is moved up to a parent of removeIndex, the parent is
            // placed in removeIndex position. We must return that to the iterator so
            // that it knows to skip it.
            if (crossOver < removeIndex) {
                // We crossed over to the parent level in crossOver, so the parent
                // has already been moved.
                parent = elementData(removeIndex);
            } else {
                parent = elementData(getParentIndex(removeIndex));
            }
            // bubble it up the opposite heap
            if (otherHeap.bubbleUpAlternatingLevels(crossOver, toTrickle) < removeIndex) {
                return new MoveDesc<E>(toTrickle, parent);
            } else {
                return null;
            }
        }

        /**
         * Bubbles a value from {@code index} up the appropriate heap if required.
         */
        void bubbleUp(int index, E x) {
            int crossOver = crossOverUp(index, x);

            Heap heap;
            if (crossOver == index) {
                heap = this;
            } else {
                index = crossOver;
                heap = otherHeap;
            }
            heap.bubbleUpAlternatingLevels(index, x);
        }

        /**
         * Bubbles a value from {@code index} up the levels of this heap, and
         * returns the index the element ended up at.
         */
        int bubbleUpAlternatingLevels(int index, E x) {
            while (index > 2) {
                int grandParentIndex = getGrandparentIndex(index);
                E e = elementData(grandParentIndex);
                if (ordering.compare(e, x) <= 0) {
                    break;
                }
                queue[index] = e;
                index = grandParentIndex;
            }
            queue[index] = x;
            return index;
        }

        /**
         * Returns the index of minimum value between {@code index} and
         * {@code index + len}, or {@code -1} if {@code index} is greater than
         * {@code size}.
         */
        int findMin(int index, int len) {
            if (index >= size) {
                return -1;
            }
            checkState(index > 0);
            int limit = Math.min(index, size - len) + len;
            int minIndex = index;
            for (int i = index + 1; i < limit; i++) {
                if (compareElements(i, minIndex) < 0) {
                    minIndex = i;
                }
            }
            return minIndex;
        }

        /**
         * Returns the minimum child or {@code -1} if no child exists.
         */
        int findMinChild(int index) {
            return findMin(getLeftChildIndex(index), 2);
        }

        /**
         * Returns the minimum grand child or -1 if no grand child exists.
         */
        int findMinGrandChild(int index) {
            int leftChildIndex = getLeftChildIndex(index);
            if (leftChildIndex < 0) {
                return -1;
            }
            return findMin(getLeftChildIndex(leftChildIndex), 4);
        }

        /**
         * Moves an element one level up from a min level to a max level
         * (or vice versa).
         * Returns the new position of the element.
         */
        int crossOverUp(int index, E x) {
            if (index == 0) {
                queue[0] = x;
                return 0;
            }
            int parentIndex = getParentIndex(index);
            E parentElement = elementData(parentIndex);
            if (parentIndex != 0) {
                // This is a guard for the case of the childless uncle.
                // Since the end of the array is actually the middle of the heap,
                // a smaller childless uncle can become a child of x when we
                // bubble up alternate levels, violating the invariant.
                int grandparentIndex = getParentIndex(parentIndex);
                int uncleIndex = getRightChildIndex(grandparentIndex);
                if (uncleIndex != parentIndex && getLeftChildIndex(uncleIndex) >= size) {
                    E uncleElement = elementData(uncleIndex);
                    if (ordering.compare(uncleElement, parentElement) < 0) {
                        parentIndex = uncleIndex;
                        parentElement = uncleElement;
                    }
                }
            }
            if (ordering.compare(parentElement, x) < 0) {
                queue[index] = parentElement;
                queue[parentIndex] = x;
                return parentIndex;
            }
            queue[index] = x;
            return index;
        }

        /**
         * Returns the conceptually correct last element of the heap.
         *
         * <p>Since the last element of the array is actually in the
         * middle of the sorted structure, a childless uncle node could be
         * smaller, which would corrupt the invariant if this element
         * becomes the new parent of the uncle. In that case, we first
         * switch the last element with its uncle, before returning.
         */
        int getCorrectLastElement(E actualLastElement) {
            int parentIndex = getParentIndex(size);
            if (parentIndex != 0) {
                int grandparentIndex = getParentIndex(parentIndex);
                int uncleIndex = getRightChildIndex(grandparentIndex);
                if (uncleIndex != parentIndex && getLeftChildIndex(uncleIndex) >= size) {
                    E uncleElement = elementData(uncleIndex);
                    if (ordering.compare(uncleElement, actualLastElement) < 0) {
                        queue[uncleIndex] = actualLastElement;
                        queue[size] = uncleElement;
                        return uncleIndex;
                    }
                }
            }
            return size;
        }

        /**
         * Crosses an element over to the opposite heap by moving it one level down
         * (or up if there are no elements below it).
         *
         * Returns the new position of the element.
         */
        int crossOver(int index, E x) {
            int minChildIndex = findMinChild(index);
            // TODO(kevinb): split the && into two if's and move crossOverUp so it's
            // only called when there's no child.
            if ((minChildIndex > 0) && (ordering.compare(elementData(minChildIndex), x) < 0)) {
                queue[index] = elementData(minChildIndex);
                queue[minChildIndex] = x;
                return minChildIndex;
            }
            return crossOverUp(index, x);
        }

        /**
         * Fills the hole at {@code index} by moving in the least of its
         * grandchildren to this position, then recursively filling the new hole
         * created.
         *
         * @return the position of the new hole (where the lowest grandchild moved
         *     from, that had no grandchild to replace it)
         */
        int fillHoleAt(int index) {
            int minGrandchildIndex;
            while ((minGrandchildIndex = findMinGrandChild(index)) > 0) {
                queue[index] = elementData(minGrandchildIndex);
                index = minGrandchildIndex;
            }
            return index;
        }

        private boolean verifyIndex(int i) {
            if ((getLeftChildIndex(i) < size) && (compareElements(i, getLeftChildIndex(i)) > 0)) {
                return false;
            }
            if ((getRightChildIndex(i) < size) && (compareElements(i, getRightChildIndex(i)) > 0)) {
                return false;
            }
            if ((i > 0) && (compareElements(i, getParentIndex(i)) > 0)) {
                return false;
            }
            if ((i > 2) && (compareElements(getGrandparentIndex(i), i) > 0)) {
                return false;
            }
            return true;
        }

        // These would be static if inner classes could have static members.

        private int getLeftChildIndex(int i) {
            return i * 2 + 1;
        }

        private int getRightChildIndex(int i) {
            return i * 2 + 2;
        }

        private int getParentIndex(int i) {
            return (i - 1) / 2;
        }

        private int getGrandparentIndex(int i) {
            return getParentIndex(getParentIndex(i)); // (i - 3) / 4
        }
    }

    /**
     * Iterates the elements of the queue in no particular order.
     *
     * If the underlying queue is modified during iteration an exception will be
     * thrown.
     */
    private class QueueIterator implements Iterator<E> {
        private int cursor = -1;
        private int expectedModCount = modCount;
        private Queue<E> forgetMeNot;
        private List<E> skipMe;
        private E lastFromForgetMeNot;
        private boolean canRemove;

        @Override
        public boolean hasNext() {
            checkModCount();
            return (nextNotInSkipMe(cursor + 1) < size()) || ((forgetMeNot != null) && !forgetMeNot.isEmpty());
        }

        @Override
        public E next() {
            checkModCount();
            int tempCursor = nextNotInSkipMe(cursor + 1);
            if (tempCursor < size()) {
                cursor = tempCursor;
                canRemove = true;
                return elementData(cursor);
            } else if (forgetMeNot != null) {
                cursor = size();
                lastFromForgetMeNot = forgetMeNot.poll();
                if (lastFromForgetMeNot != null) {
                    canRemove = true;
                    return lastFromForgetMeNot;
                }
            }
            throw new NoSuchElementException("iterator moved past last element in queue.");
        }

        @Override
        public void remove() {
            checkRemove(canRemove);
            checkModCount();
            canRemove = false;
            expectedModCount++;
            if (cursor < size()) {
                MoveDesc<E> moved = removeAt(cursor);
                if (moved != null) {
                    if (forgetMeNot == null) {
                        forgetMeNot = new ArrayDeque<E>();
                        skipMe = new ArrayList<E>(3);
                    }
                    forgetMeNot.add(moved.toTrickle);
                    skipMe.add(moved.replaced);
                }
                cursor--;
            } else { // we must have set lastFromForgetMeNot in next()
                checkState(removeExact(lastFromForgetMeNot));
                lastFromForgetMeNot = null;
            }
        }

        // Finds only this exact instance, not others that are equals()
        private boolean containsExact(Iterable<E> elements, E target) {
            for (E element : elements) {
                if (element == target) {
                    return true;
                }
            }
            return false;
        }

        // Removes only this exact instance, not others that are equals()
        boolean removeExact(Object target) {
            for (int i = 0; i < size; i++) {
                if (queue[i] == target) {
                    removeAt(i);
                    return true;
                }
            }
            return false;
        }

        void checkModCount() {
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
        }

        /**
         * Returns the index of the first element after {@code c} that is not in
         * {@code skipMe} and returns {@code size()} if there is no such element.
         */
        private int nextNotInSkipMe(int c) {
            if (skipMe != null) {
                while (c < size() && containsExact(skipMe, elementData(c))) {
                    c++;
                }
            }
            return c;
        }
    }

    /**
     * Returns an iterator over the elements contained in this collection,
     * <i>in no particular order</i>.
     *
     * <p>The iterator is <i>fail-fast</i>: If the MinMaxPriorityQueue is modified
     * at any time after the iterator is created, in any way except through the
     * iterator's own remove method, the iterator will generally throw a
     * {@link ConcurrentModificationException}. Thus, in the face of concurrent
     * modification, the iterator fails quickly and cleanly, rather than risking
     * arbitrary, non-deterministic behavior at an undetermined time in the
     * future.
     *
     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
     * as it is, generally speaking, impossible to make any hard guarantees in the
     * presence of unsynchronized concurrent modification.  Fail-fast iterators
     * throw {@code ConcurrentModificationException} on a best-effort basis.
     * Therefore, it would be wrong to write a program that depended on this
     * exception for its correctness: <i>the fail-fast behavior of iterators
     * should be used only to detect bugs.</i>
     *
     * @return an iterator over the elements contained in this collection
     */
    @Override
    public Iterator<E> iterator() {
        return new QueueIterator();
    }

    @Override
    public void clear() {
        for (int i = 0; i < size; i++) {
            queue[i] = null;
        }
        size = 0;
    }

    @Override
    public Object[] toArray() {
        Object[] copyTo = new Object[size];
        System.arraycopy(queue, 0, copyTo, 0, size);
        return copyTo;
    }

    /**
     * Returns the comparator used to order the elements in this queue. Obeys the
     * general contract of {@link PriorityQueue#comparator}, but returns {@link
     * Ordering#natural} instead of {@code null} to indicate natural ordering.
     */
    public Comparator<? super E> comparator() {
        return minHeap.ordering;
    }

    @VisibleForTesting
    int capacity() {
        return queue.length;
    }

    // Size/capacity-related methods

    private static final int DEFAULT_CAPACITY = 11;

    @VisibleForTesting
    static int initialQueueSize(int configuredExpectedSize, int maximumSize, Iterable<?> initialContents) {
        // Start with what they said, if they said it, otherwise DEFAULT_CAPACITY
        int result = (configuredExpectedSize == Builder.UNSET_EXPECTED_SIZE) ? DEFAULT_CAPACITY
                : configuredExpectedSize;

        // Enlarge to contain initial contents
        if (initialContents instanceof Collection) {
            int initialSize = ((Collection<?>) initialContents).size();
            result = Math.max(result, initialSize);
        }

        // Now cap it at maxSize + 1
        return capAtMaximumSize(result, maximumSize);
    }

    private void growIfNeeded() {
        if (size > queue.length) {
            int newCapacity = calculateNewCapacity();
            Object[] newQueue = new Object[newCapacity];
            System.arraycopy(queue, 0, newQueue, 0, queue.length);
            queue = newQueue;
        }
    }

    /** Returns ~2x the old capacity if small; ~1.5x otherwise. */
    private int calculateNewCapacity() {
        int oldCapacity = queue.length;
        int newCapacity = (oldCapacity < 64) ? (oldCapacity + 1) * 2 : IntMath.checkedMultiply(oldCapacity / 2, 3);
        return capAtMaximumSize(newCapacity, maximumSize);
    }

    /** There's no reason for the queueSize to ever be more than maxSize + 1 */
    private static int capAtMaximumSize(int queueSize, int maximumSize) {
        return Math.min(queueSize - 1, maximumSize) + 1; // don't overflow
    }
}