com.github.jmabuin.blaspark.solvers.JacobiSolver.java Source code

Java tutorial

Introduction

Here is the source code for com.github.jmabuin.blaspark.solvers.JacobiSolver.java

Source

/**
 * Copyright 2017 Jos Manuel Abun Mosquera <josemanuel.abuin@usc.es>
 *
 * This file is part of BLASpark.
 *
 * BLASpark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * BLASpark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with BLASpark. If not, see <http://www.gnu.org/licenses/>.
 */

package com.github.jmabuin.blaspark.solvers;

import com.github.jmabuin.blaspark.io.IO;
import com.github.jmabuin.blaspark.operations.L1;
import com.github.jmabuin.blaspark.operations.L2;
import com.github.jmabuin.blaspark.operations.L3;
import com.github.jmabuin.blaspark.operations.OtherOperations;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.linalg.BLAS;
import org.apache.spark.mllib.linalg.DenseVector;
import org.apache.spark.mllib.linalg.distributed.DistributedMatrix;
import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix;

/**
 * Class to implement the Conjugate Gradient method
 * @author Jose M. Abuin
 * @brief Class to perform the Conjugate Gradient method. Valid only for symmetric and positive definite matrices
 */
public class JacobiSolver {

    private static final Log LOG = LogFactory.getLog(JacobiSolver.class);
    private static final double EPSILON = 1.0e-5;

    /**
     * We are going to perform Ax = b where A is the input matrix. x is the output vector and b is the input vector
     * @param matrix The input matrix A
     * @param inputVector The input vector b
     * @param outputVector The output vector x
     * @param numIterations The max number of iterations to perform
     * @return The solution vector
     */
    public static DenseVector solve(DistributedMatrix matrix, DenseVector inputVector, DenseVector outputVector,
            long numIterations, JavaSparkContext jsc) {

        long start = System.nanoTime();

        //Jacobi Method as shown in the example from https://en.wikipedia.org/wiki/Jacobi_method

        long k = 0;
        boolean stop = false;
        int i = 0;
        double result = 0.0;

        //Initial solution
        DenseVector x1;// = Vectors.zeros(inputVector.size()).toDense();
        double[] x1Values = new double[inputVector.size()];

        DenseVector x2 = Vectors.zeros(inputVector.size()).toDense();
        DenseVector res = Vectors.zeros(inputVector.size()).toDense();

        DistributedMatrix LU;
        DistributedMatrix Dinv;
        DistributedMatrix T = null;

        DenseVector C = Vectors.zeros(inputVector.size()).toDense();

        /*if(!isDiagonallyDominant(A,M,N,nz)){
           fprintf(stderr, "[%s] The matrix is not diagonally dominant\n",__func__);
           //return 0;
        }*/

        LU = OtherOperations.GetLU(matrix, jsc);

        Dinv = OtherOperations.GetD(matrix, true, jsc);

        for (i = 0; i < x1Values.length; i++) {
            x1Values[i] = 1.0;
        }

        x1 = new DenseVector(x1Values);
        //T=-D^{-1}(L+U)
        T = L3.DGEMM(-1.0, Dinv, LU, 0.0, T, jsc);

        //C=D^{-1}B
        C = L2.DGEMV(1.0, Dinv, inputVector, 0.0, C, jsc);

        long maxIterations = inputVector.size() * 2;

        if (numIterations != 0) {
            maxIterations = numIterations;
        }

        while (!stop) {

            // x^{(1)}= Tx^{(0)}+C
            //x2 = T*x1
            x2 = L2.DGEMV(1.0, T, x1, 0.0, x2, jsc);

            //x2 = x2+C
            BLAS.axpy(1.0, C, x2);

            //res = A*x - b
            res = inputVector.copy();
            L2.DGEMV(1.0, matrix, x2, -1.0, res, jsc);

            result = L1.vectorSumElements(res);

            if ((Math.abs(result) <= EPSILON) || (k == maxIterations)) {
                //fprintf(stderr,"Sum vector res is %lg\n",result);
                stop = true;
            }

            x1 = x2.copy();

            k++;
        }

        outputVector = x2.copy();

        long end = System.nanoTime();

        LOG.warn("Total time in solve system is: " + (end - start) / 1e9 + " and " + k + " iterations.");

        return outputVector;

    }

}