Java tutorial
/******************************************************************************* * Copyright (c) 2010-2013 Torsten Hildebrandt and jasima contributors * * This file is part of jasima, v1.0. * * jasima is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * jasima is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with jasima. If not, see <http://www.gnu.org/licenses/>. * * $Id: SummaryStat.java 74 2013-01-08 17:31:49Z THildebrandt@gmail.com $ *******************************************************************************/ package com.fay.statics; import org.apache.commons.math3.distribution.TDistribution; /** * Class to collect the most important statistics without having to store all * values encountered. It can return mean, standard deviation, variance, min, * max etc. in O(1) time. Values are passed by calling the * {@link #value(double)} method. Values can be weighted, just call * {@link #value(double, double)} instead. * <p /> * In other simulation packages this is sometimes called "tally". * * @author Torsten Hildebrandt <hil@biba.uni-bremen.de> * @version "$Id: SummaryStat.java 73 2013-01-08 17:16:19Z THildebrandt@gmail.com$" */ public class SummaryStat { private static final double MIN_WEIGHT = 1e-12d; protected static final double DEF_ERROR_PROB = 0.05; private String name; private double valSum, sumSquare, weightSum; private int numObs; private double max; private double min; protected double lastValue, lastWeight; public SummaryStat() { this((String) null); } /** * Create a new SummaryStat-object initialized with the values of "vs". */ public SummaryStat(SummaryStat vs) { this(vs.name); valSum = vs.valSum; sumSquare = vs.sumSquare; weightSum = vs.weightSum; lastValue = vs.lastValue; lastWeight = vs.lastWeight; numObs = vs.numObs; max = vs.max; min = vs.min; } public SummaryStat(String name) { super(); clear(); setName(name); } public void value(double v) { value(v, 1.0d); } public void value(double v, double weight) { if (weight < 0.0d) throw new IllegalArgumentException("Weight can't be negative. " + weight); if (weight < MIN_WEIGHT) return; lastValue = v; lastWeight = weight; numObs++; if (v < min) min = v; if (v > max) max = v; weightSum += weight; final double vw = v * weight; valSum += vw; sumSquare += v * vw; } public double mean() { if (numObs < 1) return Double.NaN; return valSum / weightSum; } public double stdDev() { return Math.sqrt(variance()); } public double variance() { if (numObs < 2) return Double.NaN; return (weightSum * sumSquare - valSum * valSum) / (weightSum * (weightSum - 1)); } /** Returns the coefficient of variation. */ public double varCoeff() { return stdDev() / mean(); } public double sum() { if (numObs < 1) return Double.NaN; return valSum; } public int numObs() { return numObs; } public double min() { if (numObs < 1) return Double.NaN; return min; } public double max() { if (numObs < 1) return Double.NaN; return max; } /** * Combines the io in "other" with another ValueStat-Object. The combined * object behaves as if it had also seen the io of "other". */ public void combine(SummaryStat other) { valSum += other.valSum; sumSquare += other.sumSquare; weightSum += other.weightSum; numObs += other.numObs; if (other.max > max) max = other.max; if (other.min < min) min = other.min; } /** * @return lower value of a confidence interval with a 0.95-confidence level */ public double confidenceIntervalLower() { return confidenceIntervalLower(DEF_ERROR_PROB); } public double confidenceIntervalUpper() { return confidenceIntervalUpper(DEF_ERROR_PROB); } public double confidenceIntervalLower(double errorProb) { return mean() - confIntRangeSingle(errorProb); } public double confidenceIntervalUpper(double errorProb) { return mean() + confIntRangeSingle(errorProb); } public double confIntRangeSingle(double errorProb) { if (numObs <= 2) return Double.NaN; double deg = weightSum() - 1.0d; TDistribution dist = new TDistribution(deg); return Math.abs(dist.inverseCumulativeProbability(errorProb * 0.5d)) * Math.sqrt(variance() / weightSum()); } public double weightSum() { return weightSum; } public double lastValue() { if (numObs == 0) return Double.NaN; return lastValue; } public double lastWeight() { if (numObs == 0) return Double.NaN; return lastWeight; } public void clear() { valSum = sumSquare = 0.0d; numObs = 0; weightSum = 0.0d; min = Double.POSITIVE_INFINITY; max = Double.NEGATIVE_INFINITY; } public void setName(String name) { this.name = name; } public String getName() { return name; } }