Java tutorial
/* * Copyright 2012, Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.facebook.LinkBench.distributions; import java.util.Properties; import java.util.Random; import org.apache.commons.math3.util.FastMath; import com.oltpbenchmark.benchmarks.linkbench.LinkBenchConstants; import com.oltpbenchmark.benchmarks.linkbench.utils.ConfigUtil; /** * Geometric distribution * * NOTE: this generates values in the range [min, max). Since the * real geometric distribution generates values in range [min, inf), * we truncate anything >= max */ public class GeometricDistribution implements ProbabilityDistribution { /** The probability parameter that defines the distribution */ private double p = 0.0; /** Valid range */ private long min = 0, max = 0; private double scale = 0.0; public static final String PROB_PARAM_KEY = "prob"; @Override public void init(long min, long max, Properties props, String keyPrefix) { double parsedP = ConfigUtil.getDouble(props, keyPrefix + PROB_PARAM_KEY); double scaleVal = 1.0; ; if (props.containsKey(LinkBenchConstants.PROB_MEAN)) { scaleVal = (max - min) * ConfigUtil.getDouble(props, keyPrefix + LinkBenchConstants.PROB_MEAN); } init(min, max, parsedP, scaleVal); } public void init(long min, long max, double p, double scale) { this.min = min; this.max = max; this.p = p; this.scale = scale; } @Override public double pdf(long id) { return scaledPdf(id, 1.0); } @Override public double expectedCount(long id) { return scaledPdf(id, scale); } private double scaledPdf(long id, double scaleFactor) { if (id < min || id >= max) return 0.0; long x = id - min; return FastMath.pow(1 - p, x) * scaleFactor * p; } @Override public double cdf(long id) { if (id < min) return 0.0; if (id >= max) return 1.0; return 1 - FastMath.pow(1 - p, id - min + 1); } @Override public long choose(Random rng) { return quantile(rng.nextDouble()); } @Override public long quantile(double r) { /* * Quantile function for geometric distribution over * range [0, inf) where 0 < r < 1 * quantile(r) = ceiling(ln(1 - r) / ln (1 - p)) * Source: http://www.math.uah.edu/stat/bernoulli/Geometric.html */ if (r == 0.0) return min; // 0.0 must be handled specially long x = min + (long) FastMath.ceil(FastMath.log(1 - r) / FastMath.log(1 - p)); // truncate over max return Math.min(x, max - 1); } }