Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.elex.dmp.lda; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.DoubleWritable; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import org.apache.mahout.common.MemoryUtil; import org.apache.mahout.common.RandomUtils; import org.apache.mahout.math.DenseVector; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.IOException; import java.util.Random; public class CachingCVB0PerplexityMapper extends Mapper<Text, VectorWritable, DoubleWritable, DoubleWritable> { /** * Hadoop counters for {@link CachingCVB0PerplexityMapper}, to aid in debugging. */ public enum Counters { SAMPLED_DOCUMENTS } private static final Logger log = LoggerFactory.getLogger(CachingCVB0PerplexityMapper.class); private ModelTrainer modelTrainer; private int maxIters; private int numTopics; private float testFraction; private Random random; private Vector topicVector; private final DoubleWritable outKey = new DoubleWritable(); private final DoubleWritable outValue = new DoubleWritable(); @Override protected void setup(Context context) throws IOException, InterruptedException { MemoryUtil.startMemoryLogger(5000); log.info("Retrieving configuration"); Configuration conf = context.getConfiguration(); float eta = conf.getFloat(CVB0Driver.TERM_TOPIC_SMOOTHING, Float.NaN); float alpha = conf.getFloat(CVB0Driver.DOC_TOPIC_SMOOTHING, Float.NaN); long seed = conf.getLong(CVB0Driver.RANDOM_SEED, 1234L); random = RandomUtils.getRandom(seed); numTopics = conf.getInt(CVB0Driver.NUM_TOPICS, -1); int numTerms = conf.getInt(CVB0Driver.NUM_TERMS, -1); int numUpdateThreads = conf.getInt(CVB0Driver.NUM_UPDATE_THREADS, 1); int numTrainThreads = conf.getInt(CVB0Driver.NUM_TRAIN_THREADS, 4); maxIters = conf.getInt(CVB0Driver.MAX_ITERATIONS_PER_DOC, 10); float modelWeight = conf.getFloat(CVB0Driver.MODEL_WEIGHT, 1.0f); testFraction = conf.getFloat(CVB0Driver.TEST_SET_FRACTION, 0.1f); log.info("Initializing read model"); TopicModel readModel; Path[] modelPaths = CVB0Driver.getModelPaths(conf); if (modelPaths != null && modelPaths.length > 0) { readModel = new TopicModel(conf, eta, alpha, null, numUpdateThreads, modelWeight, modelPaths); } else { log.info("No model files found"); readModel = new TopicModel(numTopics, numTerms, eta, alpha, RandomUtils.getRandom(seed), null, numTrainThreads, modelWeight); } log.info("Initializing model trainer"); modelTrainer = new ModelTrainer(readModel, null, numTrainThreads, numTopics, numTerms); log.info("Initializing topic vector"); topicVector = new DenseVector(new double[numTopics]); } @Override protected void cleanup(Context context) throws IOException, InterruptedException { MemoryUtil.stopMemoryLogger(); } @Override public void map(Text docId, VectorWritable document, Context context) throws IOException, InterruptedException { if (1 > testFraction && random.nextFloat() >= testFraction) { return; } context.getCounter(Counters.SAMPLED_DOCUMENTS).increment(1); outKey.set(document.get().norm(1)); outValue.set( modelTrainer.calculatePerplexity(document.get(), topicVector.assign(1.0 / numTopics), maxIters)); context.write(outKey, outValue); } }