com.elex.dmp.core.TopicModel.java Source code

Java tutorial

Introduction

Here is the source code for com.elex.dmp.core.TopicModel.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.elex.dmp.core;

import com.google.common.collect.Lists;
import org.apache.hadoop.conf.Configurable;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.RandomUtils;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileIterable;
import org.apache.mahout.math.DenseMatrix;
import org.apache.mahout.math.DenseVector;
import org.apache.mahout.math.DistributedRowMatrixWriter;
import org.apache.mahout.math.Matrix;
import org.apache.mahout.math.MatrixSlice;
import org.apache.mahout.math.SequentialAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
import org.apache.mahout.math.function.Functions;
import org.apache.mahout.math.stats.Sampler;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

/**
 * Thin wrapper around a {@link Matrix} of counts of occurrences of (topic, term) pairs.  Dividing
 * {code topicTermCount.viewRow(topic).get(term)} by the sum over the values for all terms in that
 * row yields p(term | topic).  Instead dividing it by all topic columns for that term yields
 * p(topic | term).
 *
 * Multithreading is enabled for the {@code update(Matrix)} method: this method is async, and
 * merely submits the matrix to a work queue.  When all work has been submitted,
 * {@code awaitTermination()} should be called, which will block until updates have been
 * accumulated.
 */
public class TopicModel implements Configurable, Iterable<MatrixSlice> {

    private static final Logger log = LoggerFactory.getLogger(TopicModel.class);

    private final String[] dictionary;
    private final Matrix topicTermCounts;
    private final Vector topicSums;
    private final int numTopics;
    private final int numTerms;
    private final double eta;
    private final double alpha;

    private Configuration conf;

    private final Sampler sampler;
    private final int numThreads;
    private Updater[] updaters;

    public int getNumTerms() {
        return numTerms;
    }

    public int getNumTopics() {
        return numTopics;
    }

    public TopicModel(int numTopics, int numTerms, double eta, double alpha, String[] dictionary,
            double modelWeight) {
        this(numTopics, numTerms, eta, alpha, null, dictionary, 1, modelWeight);
    }

    public TopicModel(Configuration conf, double eta, double alpha, String[] dictionary, int numThreads,
            double modelWeight, Path... modelpath) throws IOException {
        this(loadModel(conf, modelpath), eta, alpha, dictionary, numThreads, modelWeight);
    }

    public TopicModel(int numTopics, int numTerms, double eta, double alpha, String[] dictionary, int numThreads,
            double modelWeight) {
        this(new DenseMatrix(numTopics, numTerms), new DenseVector(numTopics), eta, alpha, dictionary, numThreads,
                modelWeight);
    }

    public TopicModel(int numTopics, int numTerms, double eta, double alpha, Random random, String[] dictionary,
            int numThreads, double modelWeight) {
        this(randomMatrix(numTopics, numTerms, random), eta, alpha, dictionary, numThreads, modelWeight);
    }

    private TopicModel(Pair<Matrix, Vector> model, double eta, double alpha, String[] dict, int numThreads,
            double modelWeight) {
        this(model.getFirst(), model.getSecond(), eta, alpha, dict, numThreads, modelWeight);
    }

    public TopicModel(Matrix topicTermCounts, Vector topicSums, double eta, double alpha, String[] dictionary,
            double modelWeight) {
        this(topicTermCounts, topicSums, eta, alpha, dictionary, 1, modelWeight);
    }

    public TopicModel(Matrix topicTermCounts, double eta, double alpha, String[] dictionary, int numThreads,
            double modelWeight) {
        this(topicTermCounts, viewRowSums(topicTermCounts), eta, alpha, dictionary, numThreads, modelWeight);
    }

    public TopicModel(Matrix topicTermCounts, Vector topicSums, double eta, double alpha, String[] dictionary,
            int numThreads, double modelWeight) {
        this.dictionary = dictionary;
        this.topicTermCounts = topicTermCounts;
        this.topicSums = topicSums;
        this.numTopics = topicSums.size();
        this.numTerms = topicTermCounts.numCols();
        this.eta = eta;
        this.alpha = alpha;
        this.sampler = new Sampler(RandomUtils.getRandom());
        this.numThreads = numThreads;
        if (modelWeight != 1) {
            topicSums.assign(Functions.mult(modelWeight));
            for (int x = 0; x < numTopics; x++) {
                topicTermCounts.viewRow(x).assign(Functions.mult(modelWeight));
            }
        }
        initializeThreadPool();
    }

    private static Vector viewRowSums(Matrix m) {
        Vector v = new DenseVector(m.numRows());
        for (MatrixSlice slice : m) {
            v.set(slice.index(), slice.vector().norm(1));
        }
        return v;
    }

    private void initializeThreadPool() {
        ThreadPoolExecutor threadPool = new ThreadPoolExecutor(numThreads, numThreads, 0, TimeUnit.SECONDS,
                new ArrayBlockingQueue<Runnable>(numThreads * 10));
        threadPool.allowCoreThreadTimeOut(false);
        updaters = new Updater[numThreads];
        for (int i = 0; i < numThreads; i++) {
            updaters[i] = new Updater();
            threadPool.submit(updaters[i]);
        }
    }

    Matrix topicTermCounts() {
        return topicTermCounts;
    }

    @Override
    public Iterator<MatrixSlice> iterator() {
        return topicTermCounts.iterateAll();
    }

    public Vector topicSums() {
        return topicSums;
    }

    private static Pair<Matrix, Vector> randomMatrix(int numTopics, int numTerms, Random random) {
        Matrix topicTermCounts = new DenseMatrix(numTopics, numTerms);
        Vector topicSums = new DenseVector(numTopics);
        if (random != null) {
            for (int x = 0; x < numTopics; x++) {
                for (int term = 0; term < numTerms; term++) {
                    topicTermCounts.viewRow(x).set(term, random.nextDouble());
                }
            }
        }
        for (int x = 0; x < numTopics; x++) {
            topicSums.set(x, random == null ? 1.0 : topicTermCounts.viewRow(x).norm(1));
        }
        return Pair.of(topicTermCounts, topicSums);
    }

    public static Pair<Matrix, Vector> loadModel(Configuration conf, Path... modelPaths) throws IOException {
        int numTopics = -1;
        int numTerms = -1;
        List<Pair<Integer, Vector>> rows = Lists.newArrayList();
        for (Path modelPath : modelPaths) {
            for (Pair<Text, VectorWritable> row : new SequenceFileIterable<Text, VectorWritable>(modelPath, true,
                    conf)) {
                rows.add(Pair.of(Integer.parseInt(row.getFirst().toString()), row.getSecond().get()));//keytext
                numTopics = Math.max(numTopics, Integer.parseInt(row.getFirst().toString()));//keytext
                if (numTerms < 0) {
                    numTerms = row.getSecond().get().size();
                }
            }
        }
        if (rows.isEmpty()) {
            throw new IOException(Arrays.toString(modelPaths) + " have no vectors in it");
        }
        numTopics++;
        Matrix model = new DenseMatrix(numTopics, numTerms);
        Vector topicSums = new DenseVector(numTopics);
        for (Pair<Integer, Vector> pair : rows) {
            model.viewRow(pair.getFirst()).assign(pair.getSecond());
            topicSums.set(pair.getFirst(), pair.getSecond().norm(1));
        }
        return Pair.of(model, topicSums);
    }

    // NOTE: this is purely for debug purposes.  It is not performant to "toString()" a real model
    @Override
    public String toString() {
        StringBuilder buf = new StringBuilder();
        for (int x = 0; x < numTopics; x++) {
            String v = dictionary != null
                    ? vectorToSortedString(topicTermCounts.viewRow(x).normalize(1), dictionary)
                    : topicTermCounts.viewRow(x).asFormatString();
            buf.append(v).append('\n');
        }
        return buf.toString();
    }

    public int sampleTerm(Vector topicDistribution) {
        return sampler.sample(topicTermCounts.viewRow(sampler.sample(topicDistribution)));
    }

    public int sampleTerm(int topic) {
        return sampler.sample(topicTermCounts.viewRow(topic));
    }

    public void reset() {
        for (int x = 0; x < numTopics; x++) {
            topicTermCounts.assignRow(x, new SequentialAccessSparseVector(numTerms));
        }
        topicSums.assign(1.0);
        initializeThreadPool();
    }

    public void awaitTermination() {
        for (Updater updater : updaters) {
            updater.shutdown();
        }
    }

    public void renormalize() {
        for (int x = 0; x < numTopics; x++) {
            topicTermCounts.assignRow(x, topicTermCounts.viewRow(x).normalize(1));
            topicSums.assign(1.0);
        }
    }

    public void trainDocTopicModel(Vector original, Vector topics, Matrix docTopicModel) {
        // first calculate p(topic|term,document) for all terms in original, and all topics,
        // using p(term|topic) and p(topic|doc)
        pTopicGivenTerm(original, topics, docTopicModel);
        normalizeByTopic(docTopicModel);
        // now multiply, term-by-term, by the document, to get the weighted distribution of
        // term-topic pairs from this document.
        Iterator<Vector.Element> it = original.iterateNonZero();
        while (it.hasNext()) {
            Vector.Element e = it.next();
            for (int x = 0; x < numTopics; x++) {
                Vector docTopicModelRow = docTopicModel.viewRow(x);
                docTopicModelRow.setQuick(e.index(), docTopicModelRow.getQuick(e.index()) * e.get());
            }
        }
        // now recalculate p(topic|doc) by summing contributions from all of pTopicGivenTerm
        topics.assign(0.0);
        for (int x = 0; x < numTopics; x++) {
            topics.set(x, docTopicModel.viewRow(x).norm(1));
        }
        // now renormalize so that sum_x(p(x|doc)) = 1
        topics.assign(Functions.mult(1 / topics.norm(1)));
    }

    public Vector infer(Vector original, Vector docTopics) {
        Vector pTerm = original.like();
        Iterator<Vector.Element> it = original.iterateNonZero();
        while (it.hasNext()) {
            Vector.Element e = it.next();
            int term = e.index();
            // p(a) = sum_x (p(a|x) * p(x|i))
            double pA = 0;
            for (int x = 0; x < numTopics; x++) {
                pA += (topicTermCounts.viewRow(x).get(term) / topicSums.get(x)) * docTopics.get(x);
            }
            pTerm.set(term, pA);
        }
        return pTerm;
    }

    public void update(Matrix docTopicCounts) {
        for (int x = 0; x < numTopics; x++) {
            updaters[x % updaters.length].update(x, docTopicCounts.viewRow(x));
        }
    }

    public void updateTopic(int topic, Vector docTopicCounts) {
        topicTermCounts.viewRow(topic).assign(docTopicCounts, Functions.PLUS);
        topicSums.set(topic, topicSums.get(topic) + docTopicCounts.norm(1));
    }

    public void update(int termId, Vector topicCounts) {
        for (int x = 0; x < numTopics; x++) {
            Vector v = topicTermCounts.viewRow(x);
            v.set(termId, v.get(termId) + topicCounts.get(x));
        }
        topicSums.assign(topicCounts, Functions.PLUS);
    }

    public void persist(Path outputDir, boolean overwrite) throws IOException {
        FileSystem fs = outputDir.getFileSystem(conf);
        if (overwrite) {
            fs.delete(outputDir, true); // CHECK second arg
        }
        DistributedRowMatrixWriter.write(outputDir, conf, topicTermCounts);
    }

    /**
     * Computes {@code p(topic x|term a, document i)} distributions given input document {@code i}.
     * {@code pTGT[x][a]} is the (un-normalized) {@code p(x|a,i)}, or if docTopics is {@code null},
     * {@code p(a|x)} (also un-normalized).
     *
     * @param document doc-term vector encoding {@code w(term a|document i)}.
     * @param docTopics {@code docTopics[x]} is the overall weight of topic {@code x} in given
     *          document. If {@code null}, a topic weight of {@code 1.0} is used for all topics.
     * @param termTopicDist storage for output {@code p(x|a,i)} distributions.
     */
    private void pTopicGivenTerm(Vector document, Vector docTopics, Matrix termTopicDist) {
        // for each topic x
        for (int x = 0; x < numTopics; x++) {
            // get p(topic x | document i), or 1.0 if docTopics is null
            double topicWeight = docTopics == null ? 1.0 : docTopics.get(x);
            // get w(term a | topic x)
            Vector topicTermRow = topicTermCounts.viewRow(x);
            // get \sum_a w(term a | topic x)
            double topicSum = topicSums.get(x);
            // get p(topic x | term a) distribution to update
            Vector termTopicRow = termTopicDist.viewRow(x);

            // for each term a in document i with non-zero weight
            Iterator<Vector.Element> it = document.iterateNonZero();
            while (it.hasNext()) {
                Vector.Element e = it.next();
                int termIndex = e.index();

                // calc un-normalized p(topic x | term a, document i)
                double termTopicLikelihood = (topicTermRow.get(termIndex) + eta) * (topicWeight + alpha)
                        / (topicSum + eta * numTerms);
                termTopicRow.set(termIndex, termTopicLikelihood);
            }
        }
    }

    /**
     * sum_x sum_a (c_ai * log(p(x|i) * p(a|x)))
     */
    public double perplexity(Vector document, Vector docTopics) {
        double perplexity = 0;
        double norm = docTopics.norm(1) + (docTopics.size() * alpha);
        Iterator<Vector.Element> it = document.iterateNonZero();
        while (it.hasNext()) {
            Vector.Element e = it.next();
            int term = e.index();
            double prob = 0;
            for (int x = 0; x < numTopics; x++) {
                double d = (docTopics.get(x) + alpha) / norm;
                double p = d * (topicTermCounts.viewRow(x).get(term) + eta) / (topicSums.get(x) + eta * numTerms);
                prob += p;
            }
            perplexity += e.get() * Math.log(prob);
        }
        return -perplexity;
    }

    private void normalizeByTopic(Matrix perTopicSparseDistributions) {
        Iterator<Vector.Element> it = perTopicSparseDistributions.viewRow(0).iterateNonZero();
        // then make sure that each of these is properly normalized by topic: sum_x(p(x|t,d)) = 1
        while (it.hasNext()) {
            Vector.Element e = it.next();
            int a = e.index();
            double sum = 0;
            for (int x = 0; x < numTopics; x++) {
                sum += perTopicSparseDistributions.viewRow(x).get(a);
            }
            for (int x = 0; x < numTopics; x++) {
                perTopicSparseDistributions.viewRow(x).set(a, perTopicSparseDistributions.viewRow(x).get(a) / sum);
            }
        }
    }

    public static String vectorToSortedString(Vector vector, String[] dictionary) {
        List<Pair<String, Double>> vectorValues = new ArrayList<Pair<String, Double>>(
                vector.getNumNondefaultElements());
        Iterator<Vector.Element> it = vector.iterateNonZero();
        while (it.hasNext()) {
            Vector.Element e = it.next();
            vectorValues
                    .add(Pair.of(dictionary != null ? dictionary[e.index()] : String.valueOf(e.index()), e.get()));
        }
        Collections.sort(vectorValues, new Comparator<Pair<String, Double>>() {
            @Override
            public int compare(Pair<String, Double> x, Pair<String, Double> y) {
                return y.getSecond().compareTo(x.getSecond());
            }
        });
        Iterator<Pair<String, Double>> listIt = vectorValues.iterator();
        StringBuilder bldr = new StringBuilder(2048);
        bldr.append('{');
        int i = 0;
        while (listIt.hasNext() && i < 25) {
            i++;
            Pair<String, Double> p = listIt.next();
            bldr.append(p.getFirst());
            bldr.append(':');
            bldr.append(p.getSecond());
            bldr.append(',');
        }
        if (bldr.length() > 1) {
            bldr.setCharAt(bldr.length() - 1, '}');
        }
        return bldr.toString();
    }

    @Override
    public void setConf(Configuration configuration) {
        this.conf = configuration;
    }

    @Override
    public Configuration getConf() {
        return conf;
    }

    private final class Updater implements Runnable {
        private final ArrayBlockingQueue<Pair<Integer, Vector>> queue = new ArrayBlockingQueue<Pair<Integer, Vector>>(
                100);
        private boolean shutdown = false;
        private boolean shutdownComplete = false;

        public void shutdown() {
            try {
                synchronized (this) {
                    while (!shutdownComplete) {
                        shutdown = true;
                        wait(10000L); // Arbitrarily, wait 10 seconds rather than forever for this
                    }
                }
            } catch (InterruptedException e) {
                log.warn("Interrupted waiting to shutdown() : ", e);
            }
        }

        public boolean update(int topic, Vector v) {
            if (shutdown) { // maybe don't do this?
                throw new IllegalStateException("In SHUTDOWN state: cannot submit tasks");
            }
            while (true) { // keep trying if interrupted
                try {
                    // start async operation by submitting to the queue
                    queue.put(Pair.of(topic, v));
                    // return once you got access to the queue
                    return true;
                } catch (InterruptedException e) {
                    log.warn("Interrupted trying to queue update:", e);
                }
            }
        }

        @Override
        public void run() {
            while (!shutdown) {
                try {
                    Pair<Integer, Vector> pair = queue.poll(1, TimeUnit.SECONDS);
                    if (pair != null) {
                        updateTopic(pair.getFirst(), pair.getSecond());
                    }
                } catch (InterruptedException e) {
                    log.warn("Interrupted waiting to poll for update", e);
                }
            }
            // in shutdown mode, finish remaining tasks!
            for (Pair<Integer, Vector> pair : queue) {
                updateTopic(pair.getFirst(), pair.getSecond());
            }
            synchronized (this) {
                shutdownComplete = true;
                notifyAll();
            }
        }
    }

}