Java tutorial
/* * Copyright (c) 2013, Cloudera, Inc. All Rights Reserved. * * Cloudera, Inc. licenses this file to you under the Apache License, * Version 2.0 (the "License"). You may not use this file except in * compliance with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * This software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for * the specific language governing permissions and limitations under the * License. */ package com.cloudera.oryx.kmeans.common; import org.apache.commons.math3.random.RandomGenerator; import java.util.Arrays; import java.util.List; import com.cloudera.oryx.common.random.RandomManager; public final class WeightedSampler<T, W extends Weighted<T>> { private final double[] cumulativeSum; private final List<W> things; private final RandomGenerator random; public WeightedSampler(List<W> things, RandomGenerator random) { this.things = things; this.cumulativeSum = new double[things.size() + 1]; for (int i = 0; i < things.size(); i++) { cumulativeSum[i + 1] = cumulativeSum[i] + things.get(i).weight(); } this.random = (random == null) ? RandomManager.getRandom() : random; } public T sample() { double offset = random.nextDouble() * cumulativeSum[cumulativeSum.length - 1]; int next = Arrays.binarySearch(cumulativeSum, offset); Weighted<T> item = (next >= 0) ? things.get(next - 1) : things.get(-2 - next); return item.thing(); } }