Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.cloudera.knittingboar.sgd; import java.io.File; import org.apache.commons.io.FileUtils; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.InputSplit; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.TextInputFormat; import org.junit.After; import org.junit.Before; import org.junit.Test; import com.cloudera.knittingboar.io.InputRecordsSplit; import com.cloudera.knittingboar.messages.GlobalParameterVectorUpdateMessage; import com.cloudera.knittingboar.messages.GradientUpdateMessage; import com.cloudera.knittingboar.utils.TestingUtils; import com.google.common.io.Files; /** * A simulation of a single POLR master and a single POLR worker * * @author jpatterson * */ public class TestRunPOLRMasterAndSingleWorker { private static final Log LOG = LogFactory.getLog(TestRunPOLRMasterAndSingleWorker.class.getName()); private JobConf defaultConf; private FileSystem localFs; private Configuration configuration; private File baseDir; private Path workDir; private String inputFileName; @Before public void setup() throws Exception { defaultConf = new JobConf(); defaultConf.set("fs.defaultFS", "file:///"); localFs = FileSystem.getLocal(defaultConf); inputFileName = "kboar-shard-0.txt"; baseDir = Files.createTempDir(); File inputFile = new File(baseDir, inputFileName); TestingUtils.copyDecompressed(inputFileName + ".gz", inputFile); workDir = new Path(baseDir.getAbsolutePath()); configuration = new Configuration(); // feature vector size configuration.setInt("com.cloudera.knittingboar.setup.FeatureVectorSize", 10000); configuration.setInt("com.cloudera.knittingboar.setup.numCategories", 20); // local input split path configuration.set("com.cloudera.knittingboar.setup.LocalInputSplitPath", "hdfs://127.0.0.1/input/0"); configuration.set("com.cloudera.knittingboar.setup.RecordFactoryClassname", "com.cloudera.knittingboar.records.TwentyNewsgroupsRecordFactory"); /* * // predictor label names c.set( * "com.cloudera.knittingboar.setup.PredictorLabelNames", "x,y" ); // * predictor var types c.set( * "com.cloudera.knittingboar.setup.PredictorVariableTypes", * "numeric,numeric" ); // target variables c.set( * "com.cloudera.knittingboar.setup.TargetVariableName", "color" ); // * column header names c.set( * "com.cloudera.knittingboar.setup.ColumnHeaderNames", * "x,y,shape,color,k,k0,xx,xy,yy,a,b,c,bias" ); //c.set( * "com.cloudera.knittingboar.setup.ColumnHeaderNames", * "\"x\",\"y\",\"shape\",\"color\",\"k\",\"k0\",\"xx\",\"xy\",\"yy\",\"a\",\"b\",\"c\",\"bias\"\n" * ); */ } @After public void teardown() throws Exception { FileUtils.deleteQuietly(baseDir); } @Test public void testRunSingleWorkerSingleMaster() throws Exception { // TODO a test with assertions is not a test POLRMasterDriver master = new POLRMasterDriver(); // ------------------ // generate the debug conf ---- normally setup by YARN stuff master.setConf(configuration); // now load the conf stuff into locally used vars master.LoadConfigVarsLocally(); // now construct any needed machine learning data structures based on config master.Setup(); // ------------------ POLRWorkerDriver worker_model_builder_0 = new POLRWorkerDriver(); // simulates the conf stuff worker_model_builder_0.setConf(configuration); // ---- this all needs to be done in JobConf job = new JobConf(defaultConf); long block_size = localFs.getDefaultBlockSize(workDir); LOG.info("default block size: " + (block_size / 1024 / 1024) + "MB"); // ---- set where we'll read the input files from ------------- FileInputFormat.setInputPaths(job, workDir); // try splitting the file in a variety of sizes TextInputFormat format = new TextInputFormat(); format.configure(job); InputSplit[] splits = format.getSplits(job, 1); InputRecordsSplit custom_reader = new InputRecordsSplit(job, splits[0]); // TODO: set this up to run through the conf pathways worker_model_builder_0.setupInputSplit(custom_reader); worker_model_builder_0.LoadConfigVarsLocally(); worker_model_builder_0.Setup(); LOG.info("> Feature Size: " + worker_model_builder_0.FeatureVectorSize); LOG.info("> Category Size: " + worker_model_builder_0.num_categories); for (int x = 0; x < 25; x++) { worker_model_builder_0.RunNextTrainingBatch(); GradientUpdateMessage msg = worker_model_builder_0.GenerateUpdateMessage(); master.AddIncomingGradientMessageToQueue(msg); master.RecvGradientMessage(); // process msg master.GenerateGlobalUpdateVector(); GlobalParameterVectorUpdateMessage returned_msg = master.GetNextGlobalUpdateMsgFromQueue(); worker_model_builder_0.ProcessIncomingParameterVectorMessage(returned_msg); LOG.info("---------- cycle " + x + " done ------------- "); } // for worker_model_builder_0.Debug(); } }