com.cloudera.knittingboar.sgd.ParallelOnlineLogisticRegression.java Source code

Java tutorial

Introduction

Here is the source code for com.cloudera.knittingboar.sgd.ParallelOnlineLogisticRegression.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.cloudera.knittingboar.sgd;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.Writable;
import org.apache.mahout.classifier.sgd.AbstractOnlineLogisticRegression;
import org.apache.mahout.classifier.sgd.DefaultGradient;
import org.apache.mahout.classifier.sgd.Gradient;
import org.apache.mahout.classifier.sgd.PolymorphicWritable;
import org.apache.mahout.classifier.sgd.PriorFunction;
import org.apache.mahout.math.DenseMatrix;
import org.apache.mahout.math.DenseVector;
import org.apache.mahout.math.Matrix;
import org.apache.mahout.math.MatrixWritable;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;

import com.cloudera.knittingboar.utils.Utils;

/**
 * Parallel Online Logisitc Regression
 * 
 * Based loosely on Mahout's :
 * 
 * http://svn.apache.org/repos/asf/mahout/trunk/core/src/main/java/org/apache/
 * mahout/classifier/sgd/OnlineLogisticRegression.java
 * 
 * 
 * @author jpatterson
 * 
 */
public class ParallelOnlineLogisticRegression extends AbstractOnlineLogisticRegression implements Writable {
    public static final int WRITABLE_VERSION = 1;

    // these next two control decayFactor^steps exponential type of annealing
    // learning rate and decay factor
    private double learningRate = 1;
    private double decayFactor = 1 - 1.0e-3;

    // these next two control 1/steps^forget type annealing
    private int stepOffset = 10;
    // -1 equals even weighting of all examples, 0 means only use exponential
    // annealing
    private double forgettingExponent = -0.5;

    // controls how per term annealing works
    private int perTermAnnealingOffset = 20;

    // had to add this because its private in the base class
    private Gradient default_gradient = new DefaultGradient();

    // ####### This is NEW ######################
    // that is (numCategories-1) x numFeatures
    protected GradientBuffer gamma; // this is the saved updated gradient we merge
                                    // at the super step

    public ParallelOnlineLogisticRegression() {
        // private constructor available for serialization, but not normal use
    }

    /**
     * Main constructor
     * 
     * 
     * 
     * @param numCategories
     * @param numFeatures
     * @param prior
     */
    public ParallelOnlineLogisticRegression(int numCategories, int numFeatures, PriorFunction prior) {
        this.numCategories = numCategories;
        this.prior = prior;

        updateSteps = new DenseVector(numFeatures);
        updateCounts = new DenseVector(numFeatures).assign(perTermAnnealingOffset);
        beta = new DenseMatrix(numCategories - 1, numFeatures);

        // brand new factor for parallelization
        this.gamma = new GradientBuffer(numCategories, numFeatures);
    }

    /**
     * Chainable configuration option.
     * 
     * @param alpha
     *          New value of decayFactor, the exponential decay rate for the
     *          learning rate.
     * @return This, so other configurations can be chained.
     */
    public ParallelOnlineLogisticRegression alpha(double alpha) {
        this.decayFactor = alpha;
        return this;
    }

    @Override
    public ParallelOnlineLogisticRegression lambda(double lambda) {
        // we only over-ride this to provide a more restrictive return type
        super.lambda(lambda);
        return this;
    }

    /**
     * Chainable configuration option.
     * 
     * @param learningRate
     *          New value of initial learning rate.
     * @return This, so other configurations can be chained.
     */
    public ParallelOnlineLogisticRegression learningRate(double learningRate) {
        this.learningRate = learningRate;
        return this;
    }

    public ParallelOnlineLogisticRegression stepOffset(int stepOffset) {
        this.stepOffset = stepOffset;
        return this;
    }

    public ParallelOnlineLogisticRegression decayExponent(double decayExponent) {
        if (decayExponent > 0) {
            decayExponent = -decayExponent;
        }
        this.forgettingExponent = decayExponent;
        return this;
    }

    @Override
    public double perTermLearningRate(int j) {
        return Math.sqrt(perTermAnnealingOffset / updateCounts.get(j));
    }

    @Override
    public double currentLearningRate() {
        return learningRate * Math.pow(decayFactor, getStep())
                * Math.pow(getStep() + stepOffset, forgettingExponent);
    }

    public void copyFrom(ParallelOnlineLogisticRegression other) {
        super.copyFrom(other);
        learningRate = other.learningRate;
        decayFactor = other.decayFactor;

        stepOffset = other.stepOffset;
        forgettingExponent = other.forgettingExponent;

        perTermAnnealingOffset = other.perTermAnnealingOffset;
    }

    public ParallelOnlineLogisticRegression copy() {
        close();
        ParallelOnlineLogisticRegression r = new ParallelOnlineLogisticRegression(numCategories(), numFeatures(),
                prior);
        r.copyFrom(this);
        return r;
    }

    /**
     * TODO - add something in to write the gamma to the output stream -- do we
     * need to save gamma?
     */
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(WRITABLE_VERSION);
        out.writeDouble(learningRate);
        out.writeDouble(decayFactor);
        out.writeInt(stepOffset);
        out.writeInt(step);
        out.writeDouble(forgettingExponent);
        out.writeInt(perTermAnnealingOffset);
        out.writeInt(numCategories);
        MatrixWritable.writeMatrix(out, beta);
        PolymorphicWritable.write(out, prior);
        VectorWritable.writeVector(out, updateCounts);
        VectorWritable.writeVector(out, updateSteps);

    }

    @Override
    public void readFields(DataInput in) throws IOException {
        int version = in.readInt();
        if (version == WRITABLE_VERSION) {
            learningRate = in.readDouble();
            decayFactor = in.readDouble();
            stepOffset = in.readInt();
            step = in.readInt();
            forgettingExponent = in.readDouble();
            perTermAnnealingOffset = in.readInt();
            numCategories = in.readInt();
            beta = MatrixWritable.readMatrix(in);
            prior = PolymorphicWritable.read(in, PriorFunction.class);

            updateCounts = VectorWritable.readVector(in);
            updateSteps = VectorWritable.readVector(in);
        } else {
            throw new IOException("Incorrect object version, wanted " + WRITABLE_VERSION + " got " + version);
        }

    }

    /**
     * Custom training for POLR based around accumulating gradient to send to the
     * master process
     * 
     * 
     */
    @Override
    public void train(long trackingKey, String groupKey, int actual, Vector instance) {
        unseal();
        double learningRate = currentLearningRate();

        // push coefficients back to zero based on the prior
        regularize(instance);

        // basically this only gets the results for each classification
        // update each row of coefficients according to result
        Vector gradient = this.default_gradient.apply(groupKey, actual, instance, this);
        for (int i = 0; i < numCategories - 1; i++) {

            double gradientBase = gradient.get(i);

            // we're only going to look at the non-zero elements of the vector
            // then we apply the gradientBase to the resulting element.
            Iterator<Vector.Element> nonZeros = instance.iterateNonZero();

            while (nonZeros.hasNext()) {
                Vector.Element updateLocation = nonZeros.next();
                int j = updateLocation.index();

                double gradient_to_add = gradientBase * learningRate * perTermLearningRate(j) * instance.get(j);

                // double old_beta = beta.getQuick(i, j);

                double newValue = beta.getQuick(i, j)
                        + gradientBase * learningRate * perTermLearningRate(j) * instance.get(j);
                beta.setQuick(i, j, newValue);

                // now update gamma --- we only want the gradient since the last time

                double old_gamma = gamma.getCell(i, j);
                double new_gamma = old_gamma + gradient_to_add; // gradientBase *
                                                                // learningRate *
                                                                // perTermLearningRate(j)
                                                                // * instance.get(j);

                gamma.setCell(i, j, new_gamma);

            }
        }

        // remember that these elements got updated
        Iterator<Vector.Element> i = instance.iterateNonZero();
        while (i.hasNext()) {
            Vector.Element element = i.next();
            int j = element.index();
            updateSteps.setQuick(j, getStep());
            updateCounts.setQuick(j, updateCounts.getQuick(j) + 1);
        }
        nextStep();

    }

    /**
     * get the current parameter vector
     * 
     * @return Matrix
     */
    public Matrix noReallyGetBeta() {

        return this.beta;

    }

    public void SetBeta(Matrix beta_mstr_cpy) {

        this.beta = beta_mstr_cpy.clone();

    }

    /**
     * Spit out the current values for Gamma (gradient buffer since last flush)
     * and Beta (parameter vector)
     * 
     */
    public void Debug_PrintGamma() {

        System.out.println("# Debug_PrintGamma > Beta: ");
        Utils.PrintVectorSectionNonZero(this.noReallyGetBeta().viewRow(0), 10);

    }

    /**
     * Reset all values in Gamma (gradient buffer) back to zero
     * 
     */
    public void FlushGamma() {

        this.gamma.Reset();

    }

    public GradientBuffer getGamma() {
        return this.gamma;
    }

}