com.cloudera.knittingboar.sgd.olr.TestBaseOLRTest20Newsgroups.java Source code

Java tutorial

Introduction

Here is the source code for com.cloudera.knittingboar.sgd.olr.TestBaseOLRTest20Newsgroups.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.cloudera.knittingboar.sgd.olr;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.mahout.classifier.sgd.ModelSerializer;
import org.apache.mahout.classifier.sgd.OnlineLogisticRegression;
import org.apache.mahout.math.DenseVector;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;

import com.cloudera.knittingboar.io.InputRecordsSplit;
import com.cloudera.knittingboar.metrics.POLRMetrics;
import com.cloudera.knittingboar.metrics.POLRModelTester;
import com.cloudera.knittingboar.records.RecordFactory;
import com.cloudera.knittingboar.records.TwentyNewsgroupsRecordFactory;

import junit.framework.TestCase;

/**
 * Mainly just a demo to show how we'd test the 20Newsgroups model generated
 * with OLR
 * 
 * @author jpatterson
 *
 */
public class TestBaseOLRTest20Newsgroups extends TestCase {

    private static Path testData20News = new Path(System.getProperty("test.build.data",
            "/Users/jpatterson/Downloads/datasets/20news-kboar/test/kboar-shard-0.txt"));

    //private static Path model20News = new Path( "/Users/jpatterson/Downloads/datasets/20news-kboar/models/model_10_31pm.model" ); 
    private static Path model20News = new Path("/tmp/olr-news-group.model");

    //private static Path testData20News = new Path(System.getProperty("test.build.data", "/Users/jpatterson/Downloads/datasets/20news-kboar/test/"));  

    private static final int FEATURES = 10000;

    private static JobConf defaultConf = new JobConf();
    private static FileSystem localFs = null;
    static {
        try {
            defaultConf.set("fs.defaultFS", "file:///");
            localFs = FileSystem.getLocal(defaultConf);
        } catch (IOException e) {
            throw new RuntimeException("init failure", e);
        }
    }

    POLRMetrics metrics = new POLRMetrics();

    //double averageLL = 0.0;
    //double averageCorrect = 0.0;
    double averageLineCount = 0.0;
    int k = 0;
    double step = 0.0;
    int[] bumps = new int[] { 1, 2, 5 };
    double lineCount = 0;

    public Configuration generateDebugConfigurationObject() {

        Configuration c = new Configuration();

        // feature vector size
        c.setInt("com.cloudera.knittingboar.setup.FeatureVectorSize", 10000);

        c.setInt("com.cloudera.knittingboar.setup.numCategories", 20);

        c.setInt("com.cloudera.knittingboar.setup.BatchSize", 200);

        // local input split path
        c.set("com.cloudera.knittingboar.setup.LocalInputSplitPath", "hdfs://127.0.0.1/input/0");

        // setup 20newsgroups
        c.set("com.cloudera.knittingboar.setup.RecordFactoryClassname",
                RecordFactory.TWENTYNEWSGROUPS_RECORDFACTORY);

        return c;

    }

    public InputSplit[] generateDebugSplits(Path input_path, JobConf job) {

        long block_size = localFs.getDefaultBlockSize();

        System.out.println("default block size: " + (block_size / 1024 / 1024) + "MB");

        // ---- set where we'll read the input files from -------------
        //FileInputFormat.setInputPaths(job, workDir);
        FileInputFormat.setInputPaths(job, input_path);

        // try splitting the file in a variety of sizes
        TextInputFormat format = new TextInputFormat();
        format.configure(job);
        //LongWritable key = new LongWritable();
        //Text value = new Text();

        int numSplits = 1;

        InputSplit[] splits = null;

        try {
            splits = format.getSplits(job, numSplits);
        } catch (IOException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }

        return splits;

    }

    public void testResults() throws Exception {

        OnlineLogisticRegression classifier = ModelSerializer
                .readBinary(new FileInputStream(model20News.toString()), OnlineLogisticRegression.class);

        Text value = new Text();
        long batch_vec_factory_time = 0;
        int k = 0;
        int num_correct = 0;

        // ---- this all needs to be done in 
        JobConf job = new JobConf(defaultConf);

        // TODO: work on this, splits are generating for everything in dir
        //    InputSplit[] splits = generateDebugSplits(inputDir, job);

        //fullRCV1Dir
        InputSplit[] splits = generateDebugSplits(testData20News, job);

        System.out.println("split count: " + splits.length);

        InputRecordsSplit custom_reader_0 = new InputRecordsSplit(job, splits[0]);

        TwentyNewsgroupsRecordFactory VectorFactory = new TwentyNewsgroupsRecordFactory("\t");

        for (int x = 0; x < 8000; x++) {

            if (custom_reader_0.next(value)) {

                long startTime = System.currentTimeMillis();

                Vector v = new RandomAccessSparseVector(FEATURES);
                int actual = VectorFactory.processLine(value.toString(), v);

                long endTime = System.currentTimeMillis();

                //System.out.println("That took " + (endTime - startTime) + " milliseconds");
                batch_vec_factory_time += (endTime - startTime);

                String ng = VectorFactory.GetClassnameByID(actual); //.GetNewsgroupNameByID( actual );

                // calc stats ---------

                double mu = Math.min(k + 1, 200);
                double ll = classifier.logLikelihood(actual, v);
                //averageLL = averageLL + (ll - averageLL) / mu;
                metrics.AvgLogLikelihood = metrics.AvgLogLikelihood + (ll - metrics.AvgLogLikelihood) / mu;

                Vector p = new DenseVector(20);
                classifier.classifyFull(p, v);
                int estimated = p.maxValueIndex();

                int correct = (estimated == actual ? 1 : 0);
                if (estimated == actual) {
                    num_correct++;
                }
                //averageCorrect = averageCorrect + (correct - averageCorrect) / mu;
                metrics.AvgCorrect = metrics.AvgCorrect + (correct - metrics.AvgCorrect) / mu;

                //this.polr.train(actual, v);

                k++;
                //        if (x == this.BatchSize - 1) {
                int bump = bumps[(int) Math.floor(step) % bumps.length];
                int scale = (int) Math.pow(10, Math.floor(step / bumps.length));

                if (k % (bump * scale) == 0) {
                    step += 0.25;

                    System.out.printf(
                            "Worker %s:\t Tested Recs: %10d, numCorrect: %d, AvgLL: %10.3f, Percent Correct: %10.2f, VF: %d\n",
                            "OLR-standard-test", k, num_correct, metrics.AvgLogLikelihood, metrics.AvgCorrect * 100,
                            batch_vec_factory_time);

                }

                classifier.close();

            } else {

                // nothing else to process in split!
                break;

            } // if

        } // for the number of passes in the run    

    }

}